S1: x2+y2+2g1x+2f1y+c1=0
S2: x2+y2+2g2x+2f2y+c2=0
S: x2+y2+2gx+2fy+c=0
S1−S2=2(g1−g2)x+2(f1−f2)y+(c1−c2)=0
S and S1, will also intersect at P and Q.
∴ Redical axis between S=0 and S1=0 is S−S1=0
S−S1=2(g−g1)x+2(f−f1)y+c−c1=0
[2(g−g1)x+2(f−f1)y+c−c1=0]×q
2(g1−g2)x+2(f1−f2)y+c1−c2=0
2q(g−g1)x+2q(f−f1)y+q(c−c1)=0
(g1−g2)=q(g−g1),(f1−f2)=q(f−f1)
and c1−c2=q(c−c1)
g=q(g1−g2)+g1,f=q(f1−f2)+f1, and c=q(c1−c2)+c1
g=g1q(1+q)−qg2,
f=f1q(1+q)−qf2 and
c=c1q(1+q)−qc2.
S:x2+y2+2x(g1q(1+q)−qg2)
+2y(f1q(1+q)−qf2)+c1q1+q)−qc2=0
x2=2(1+q)x2−q1⋅x2
S:(1+q)(x2+y2+2g1x+2f1y+c1)
−1(x2+y2+2g2x+2f2y+c2)=0
S:(1+q)S1−S2=0
(1+q)(S1−1+q1S2)=0
(1+q)(S1+(1+q−1)S2)=0
S1+kS2=0,k=1+q−1=−1
S1=x2+y2+2x+4y−4=0,O1(−1,−2), r1=3
S2=x2+y2+6y=0,O2(0,−3),r2=3
∣r1−r2∣<dO1,O2=2<6
S=S1+kS2=0 where k is real and k=−1
Solution:
S=(x2+y2+2x+4y−4)+k(x2+y2+6y)=0
(1+k)x2+(1+k)y2+2x+(4+6k)y−4=0
S′=0
x2+y2+2g′x+2f′+c′=0
L=mx+ny+p=0
Radical axis between S=0 and s′=0 muSt be L=0,
S=x2+y2+2gx+2fy+c=0
S−S′=0, ie;
S−S′=2(g−g′)x+2(f−f′)y+c−c′=0
L=mx+ny+p=0×q
mqx+nqy+pq=0
mq=2(g−g′)⇒2g=2g′+mq
nq=2(f−f′)and/⇒2f=2f′+nq
pq=c−c′⇒c=c′+pq
S=x2+y2+2gx+2fy+c=0
S=x2+y2+(2g′+mq)x+(2f′+nq)y+c′+pq=0
(x2+y2+2g′x+2f′y+c′)+q(mx+ny+p)=0
S=(S′+qL=0)
[∵S′=(x2+y2+2g′x+2f′y+c′),&L=(mx+ny+p)]
S′:(x−2x1+x2)2+(y−2y1−y2)2−4(x1−x2)2+(y1−y2)2=0
x−x1y−y1=x1−x2y1−y2
L(x−x1)(y1−y2)+(y−y1)(x2−x1)=0
S=S′+KL=0(K is real )
S=(x−2x1+x2)2+(y−2y1+y2)2−[4(x1−x2)2+(y1−y2)2]+k((x−x1)(y1−y2)+(y−y1)(x2−x1))=0
(x−4)2+(y+2)2=8
S′=(x−y)2+(y+2)2−8=0
i.e., S′=x2+y2−8x+4y+12=0
x−2y−0=2−40−(−2)=−1
x+y−2=0
L=x+y−2=0.
S=S′+kL=0
x2+y2+(k−8)x+(k+4)y+(12−2k)=0
S=x2+y2+(k−8)x+(k+4)y+(12−2k)=0
g2+f2−c
=4(k−8)2+4(k+4)2−(12−2k)
=4(2k2−8k+80−48+8k)=42k2+32>0
4+0+(k−8)2+(12−2k)=4+2k−16+12−2k
=0.