(r1,o1) and (r2,o2)
$|r_1 - r_2|
do1,o2=r1+r2 (two circles touch each other externally)
do1,o2=∣r1−r2∣ (two circles touch each other internally)
x=a+r1cosθ
y=b+r1sinθ
x=c+r2cosϕ
y=d+r2sinϕ
a+r1cosθ=c+r2cosϕ
b+r1sinθ=d+r2sinϕ
r1cosθ=(c−a)+r2cosϕ,
r1sinθ=(d−b)+r2sinϕ
r12cos2θ+r12sin2θ=(c−a)2+r22cos2ϕ+2(c−a)r2cosϕ+(d−b)2+r22sin2ϕ+2(d−b)r2sinϕ
r12=(c−a)2+(d−b)2+r22+2r2do1,o2(do1,o2(c−a)cosϕ+do1,o2(d−b)sinϕ)
r12=r22+do1,o22+2r2do1,o2(cosαcosϕ+sinαsinϕ)
r12=r22+do1,o22+2r2do1,o2cos(ϕ−α)
cos(ϕ−α)=2r2do1,o2r12−(r22+do1,o22)
⇒ϕ−α=π
⇒ϕ=α+π
r12=r22+do1,o22−2r2do1,o2
⇒r12=(r1−do1,o2)2
⇒r1=r2−do1,o2, or r1=do1,o2−r2
do1,o2=r1+r2
cos(ϕ−α)=2r2do1,o2r12−(r22+do1,o22)
=−1
do1,o2=∣r1−r2∣
2r2do1,o2r12−(r22+do1,o22)<1 (two circles intersect at exactly 2 points)
2r2do1,o2r12−(r22+do1,o22)=1 (two circles touch each other)
2r2do1,o2r12−(r22+do1,o22)>1 (two circles donot intersect)
∣r1−r2∣<do1,o2<r1+r2
cosα=do1,o2(c−a)=1
sinα=0⇒α=0
x1=c+r2cosϕ1
y1=d+r2sinϕ1
cos(ϕ−α)=2r2do1,o2r12−(r22+do1,o22)
=2×3×532−(32+52)=−65
x2=c+r2cosϕ2
y2=d+r2sinϕ2
cosϕ=−65
ϕ1=cos−1[6−5]∈[0,π]
ϕ2=2π−cos−1(−5/6)