$S_1 : x^2 + y^2 + 2g_1x + 2f_1y + c_1 = 0$, Centre $O_1(-g_1, -f_1)$
$S_2 : x^2 + y^2 + 2g_2x + 2f_2y + c_2 = 0$, Centre $O_2(-g_2, -f_2)$
$r_1 = \sqrt{g_1^2 + f_1^2 - c_1}$, $r_2=\sqrt{g_2^2 + f_2^2 - c_2}$
$d_{O_1, O_2} = \sqrt{(g_2 - g_1)+(f_2 - f_1)}$
If $|r_1 - r_2| \leq d_{O_1, O_2} \leq r_1 + r_2$ than the two circle intersect each other.
If $d_{O_1, O_2} = r_1 + r_2$ than the two circles touch each other externally at exactly one point.
If $d_{O_1, O_2} > r_1 + r_2$ than the two circles do not intersect.