Fixed distance of any point on the circle from O
=R≡Radius
Fixed point O
≡ Centre of the circle.
A chord passing through the centre is called a Diameter.
slope =1−02−1−1
x−0y−1=1
y=x+1
8=7
CENTRE : (h, K), \quad \quad RADIUS : R
△OPQ
Pythagoras theorem
(OP)2=(OQ)2+(PQ)2
R2=(x−h)2+(y−K)2
CENTRE : (1, 2)
RADIUS : 5 = R
(x,y)=(−1,3)
25=4+1
CENTRE - RADIUS FORM
CENTRE: (3,7)
RADIUS: 8
Circle with centre (h, k) and Radius R
OP=R
OQ=Rcosθ
QP=Rsinθ
x=h+Rcosθ
y=k+Rsinθ
(x−h)2=R2cos2θ
(y−k)2=R2sin2θ
Circle: {(x,y)∣x=h+Rcosθ,y=k+Rsinθ}
Circle = (x, y) | x=h+Rcosθ,
y=k+Rsinθ
θ∈(0,2π)
1) If a point (x, y) belongs to a circle having centre (h, K) and radius R,
than x=h+Rcosθ,y=k+Rsinθ
for some θ∈(0,2π)
2) For any angle θ∈(0,2π) the points (h+Rcosθ,k+Rsinθ) belongs to the circle having centre (h, K) and radius R.
(x−h)2+(y−k)2=R2
x2−2hx+h2+y2−2ky+k2=R2
[x2+y2−2hx−2ky+ck2+h2−R2]=0
→x2+y2+2gx+2fy+c=0
ax2+by2+cxy+2dx+2ey+f=0
→ general 2nd degree equation
a=b and c=0
x2+y2+a2dx+a2ey+af=0
→x2+y2+2gx+2fy+c=0
(x2+2gx+g2)+(y2+2fy+f2)+c−g2−f2=0
(x+g)2+(y+f)2=(g2+f2−c)
(x−h)2+(y−k)2=R2≥0
g2+f2−c≥0
R=g2+f2−c
g2+f2−c≥0, in which case the radius of the circle is
R=g2+f2−c and the centre of the circle is
(h,k)=(−g,−f)