Circle = (x, y) | $x=h+R \cos \theta$,
$\quad \quad \quad \quad y = k + R \sin \theta$
$\theta \in (0, 2 \pi)$
1) If a point (x, y) belongs to a circle having centre (h, K) and radius R,
than $x = h + R \cos \theta, y = k + R \sin \theta $
for some $\theta \in (0,2 \pi)$
2) For any angle $\theta \in (0, 2 \pi)$ the points $(h + R \cos \theta, k + R \sin \theta)$ belongs to the circle having centre (h, K) and radius R.