ax+by+c=0
⇒−c/ax+−c/by=1
∴OA=−c/a
OB=−c/b
AB=(−ac+0)2+(0+ac)2
=a2c2+b2c2
AB=∣abc∣a2+b2
letPN=d
∴ Area △PAB=21×AB×PN
=21×abca2+b2×d− (i)
area of △PAB
=21∣x1(0+bc)+(−ac)(−bc−y1)
+0(y1−0)∣=21∣bcx1+abc2+a′cy1∣
area:△ (P A B)
=21abc∣ax1+by1+c∣− (ii)
from (i) & (ii)
21×∣abc∣a2+b2×d
=21∣abc∣∣ax1+by1+c∣.
∴d=a2+b2∣ax1+by1+c∣
ax+by+c1=0 - (i)
ax+by+c2=0 - (ii)
put x=0 in (i)
by+c1=0⇒y=−bc1
P(0,−bc1)
distence of P on (i) from line (ii)
d=a2+b2∣a×0+b×(−c1/b)+c2∣
∴d=a2+b2∣−c2+c1∣=a2+b2∣c2−c1∣
Find the distance of the point (−2,3) from the line 12x−5y=2.
Solution:
12x−5y=2
put x=0⇒y=5−2
put y=0⇒x=61
d=a2+b2∣ax1+by1+c∣
Here
a=12,b=−5,c=−2
x1=−2, y1=3
d=(12)2+(−5)2∣12×(−2)+(−5)×3−2∣
=169∣−24−15−2∣=1341 units.
Find the distance between the lines 3x+4y=9 and 6x+8y=15.
Solution:
Given lines 3x+4y=9
⇒ 3x+4y−9=0
6x+8y=15 ⇒ 2(3x+4y)=15
⇒ 3x+4y− 215=0 ∵(2−15=c2)
d=a2+b2∣c2−c1∣=32+42∣−215+9∣
d=25∣2−15+18∣=53/2=103 units.
If the equation of the base of an equilateral traingle is x+y−6=0 and the opposite vertex is the point (−1,−1), then find the area of the traingle.
Solution:
IN △ABN,∠BNA=90∘
∴sin60∘=ad
⇒23=ad
⇒d=23a−(i)
Slope of BC=−1
Slope of AN=1 (AN perpendicular BC )
equation of AN, (y+1)=1(x+1)
⇒ x−y=0 - (ii)
x+y−6=0 -(iii)
from (ii) & (iii)
x+x=6⇒x=3
∴y=3
AN=(3+1)2+(3+1)2=42+42=42
d=23a from (i)
⇒42=23a
a=382
∴ Area of △ABC=43a2
=43(382)2 =43×364x2 =3323
d=(+1)2+(+1)2∣−1−1−6∣ =2∣−8∣=28=282
In △ABN
sin60∘=ad
⇒23=a282 ⇒a3=a2⇒a=382
ar(△ABC) =21×a×d =21×382×282=3162
If p.q are the lengths of perpendculars from the origin to the lines xcosθ−ysinθ=kcos2θ and xsecθ+ycosecθ=k respectively.
Prove that p2+4q2=k2
xcosθ−ysinθ=kcos2θ
⇒xcosθ−ysinθ−kcos2θ=0
P is the distance of line (i) from origin (A/Q)
p=cos2θ+(−sinθ)2∣0−0−kcos2θ∣
=cos2θ+sin2θkcos2θ=kcos2θ
Again,
xsecθ+ycsecθ=k
⇒cosθx+sinθy=k
⇒xsinθ+ycosθ=ksinθ⋅cosθ
⇒xsinθ+ycosθ=21k×2sinθ⋅cosθ
=2ksin2θ
⇒xsinθ+ycosθ−2ksin2θ=0
q=sin2θ+cos2θ∣0+0−2ksin2θ∣
=2ksin2θ
p2+4q2=(kcos2θ)2+4×(2ksin2θ)2
=k2cos22θ+4kxk2sin22θ
=k2(cos22θ+sin22θ)
=k2
Find the equation of the line Which is equidistant from the parallel line 3x+2y+6=0 and 9x+6y−7=0
Solution:
Given lines 3x+2y+6=0 → (i)
(i) 9x+6y−7=0
(ii) ⇒3(3x+2y−37)=0 → (ii)
3x+2y+k=0, this line is (ii) to line (i)
3x+2y+k=0
put x=0,y=−2k
P(0,−k/2)
according to question d1=d2
⇒32+22∣3×0+2×(−2k)+6∣ =32+22∣3×0+2×(−k/2)−37∣
⇒∣−k+6∣=∣−k−7/3∣=∣k+7/3∣
⇒−k+6=±(k+7/3)
⇒ −k+6=k+7/3
or −k+6=−k−7/3
⇒−2k=−6+7/3
⇒−2k=−318+7⇒+2k=−311
⇒k=611
∴ equation of line, 3x+2y+k=0
⇒3x+2y+611=0
⇒18x+12y+11=0
Find the equation of stright lines Which are perpendicular to the line 12x+5y=17 and a distance of 2 unit from the point (−4,1).
Solution:
Given equation It line 12x+5y=1) - (i) equation of line perpendicular to line (i) 5x−12y+k=0
52+122∣5×(−4)+∣2×1+k∣=2
⇒169∣−20+12+k∣=2
⇒13∣−8+k∣=2
⇒∣−8+k∣=26
⇒−8+k=±26⇒k=8±26
⇒k=34,−18
Equation of required line will be
5x−12y+3y=0
5x−12y−18=0
In the traingle with vertex A(2,3),B(4,−1) and C(−1,2), find the equation and length of altitude from the vertex A.
Solution:
slope of BC=−1−42+1
=−53
slope of A N =35
Equation of A N, (y−3)=35(x−2)
→3y−9=5x−10
→5x−3y−1=0
Equation of BC
(y+1)=−53(x−4)
⇒5y+5=−3x+12 ⇒3x+5y−7=0
∴ A=32+52∣3×2+5×3−7∣ =34∣14∣=3414