Straight line lecture 1
Rectangular Co-ordinate
$x x^{\prime} \rightarrow x \text {-axis}$
$y y^{\prime} \rightarrow y \text {-axis } .$
Distance formula
In right angle $\triangle P Q R$.
$P Q^2=P R^2+Q R^2$
$\Rightarrow d^2=(x_2-x_1)^2+(y_2-y_1)^2$
$\Rightarrow d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$
Example 1
Find the distance between the point P(1,2) and Q(-2,1).
Solution:
By the distance formula
$P Q=\sqrt{\left(x_2-x_1\right)^2+\left(x_2-y_1\right)^2}$
$ =\sqrt{(1+2)^2+(3-1)^2}$
$ =\sqrt{9+4}$
$ =\sqrt{13} $
Example 2
Show that the points $(-3,1),(2,4)$ and $(0,-4)$ are vertices of a right triangle.
$ A B^2 =(2+3)^2+(4-1)^2$ $ =25+9=34$
$B C^2 =(2-0)^2+(4+4)^2$ $ =4+64=68$
$A C^2 =(0+3)^2+(-4+1)^2$ $ =9+25=34$
$A B^2+A C^2=34+34=68=B C^2$
Questions
Try this:
1. Find distance between $(a, b)$ and $(a+c, b+d)$.
2. $A(1,0), B(-2,3), C(2,-1)$ and $D(5,2)$ are vertices of a parallelogram.
3. The point $(x, y)$ is on the $x$-axis and 6 units away from the point $(1,4)$, find $x$ & $y$.
Segment of line
$\triangle P R S \sim \triangle P Q T$.
$\frac{PS}{PT} = \frac{PR}{PQ}$
$\Rightarrow \frac{x-x_1}{x_2-x_1}=\frac{m}{m+n}$
$\Rightarrow x-x_1=\frac{m\left(x_2-x_1\right)}{m+n}$
$\Rightarrow x=x_1+\frac{m\left(x_2-x_1\right)}{m+n}$
$=\frac{m x_2+n x_1}{m+n}$
similarly $y=\frac{m y_2+n y_1}{m+n}$
when are intersect PQ externally
$x=\frac{m x_2-n x_1}{m-n} \text { or } \frac{n x_1-m x_2}{n-m}$
$y=\frac{m y_2-n y_1}{m-n} \text { or } \frac{n y_1-m y_2}{n-m}$
Mid point formula
$x=\frac{1 \cdot x_2+1 \cdot x_1}{1+1}$
$=\frac{x_1+x_2}{2}$
$y=\frac{y_1+y_2}{2}$
$R(x, y)=\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$
Example 3
Find the co-ordinates of the point $R$ which divides the segment $P(1,3), Q(-2,1)$ in the ratio
$1:3 .$
By section formula
$x=\frac{m x_2+n x_1}{m+n}$ $=\frac{1.1+3 \times(-2)}{1+3}$ $=-\frac{5}{4}$
Solution
$y=\frac{m y_2+n y_1}{m+n}$
$=\frac{1 \cdot 3+3 \cdot 1}{1+3}$
$=\frac{6}{4}$
$=\frac{3}{2}$
$\therefore \ R(x, y)=\left(-\frac{5}{4}, \frac{3}{2}\right)$
Example 4
Find the coordinates of the Mid point of the segment- $A(4,1), B(3,2)$.
Mid Point formula
$M(x, y)=(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2})$
$M(x, y)=\left(\frac{4+3}{2}, \frac{1+2}{2}\right)$
$=\left(\frac{7}{2}, \frac{3}{2}\right)$
Example 5
Find the ratio in which the line joining $(-2,2)$ and $(4,5)$ is cut by the $y$-axis?
Let $R(0, a)$ divides
$P Q$ in $k: 1$ ratio
$0=\frac{k \times 4+1 \times(-2)}{k+1}$ $ \Rightarrow \quad 4 k-2=0$ $ \Rightarrow \quad k=\frac{1}{2}$
$\therefore$ ratio $=1: 2$
$a=\frac{1 \times 5+2 \times 2}{1+2}=\frac{9}{3}=3$
Area of triangle
$\Delta=\left|\begin{array}{lll}a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3\end{array}\right|$
$=a_1 (b_2 c_3-b_3 c_2)-a_2 (b_1 c_3-b_3 c_1)$ $ +a_3 (b_1 c_2-b_2 c_1)$
Area of $\Delta$ ABC
$\Delta=\left|\begin{array}{lll}x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1\end{array}\right|$
Collinear points
Condition for collinearity of three points $(x_1, y_1),(x_2, y_2)$ & $(x_3, y_3)$
$\triangle=\left|\begin{array}{lll}x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1\end{array}\right|=0$
$\Rightarrow$ Points $(x_1, y_1)$ & $(x_2, y_2)$ & $(x_3, y_3)$ are collinear points.
Example 6
Show that the points $(2,6),(-8,1)$ and $(-2,4)$ are collinear.
Given points $A(2,6), B(-8,1)$ & $C(-2,4)$
$\Delta=\left|\begin{array}{ccc}2 & 6 & 1 \\ -8 & 1 & 1 \\ -2 & 4 & 1\end{array}\right|$
$=2(|x|-\mid x 4)-6(-8 \times 1-(-2) \times 1) +1(-8 \times 4-(-2) \times 1)$
======
$=2(1-4)-6(-8+2)+1(-32+2)$
$=-6+36-30 =-36+36 =0 $
$\therefore \ A, B \ \& \ C$ are collinear point.
Slope of a line
Slope (m) = tan$\theta$
in $\triangle P Q R, \angle R=90^{\circ}$
$\therefore \tan \theta=\frac{Q R}{P R}=\frac{y_2-y_1}{x_2-x_1}$
(i) $ \theta=0 $ $ \ \Rightarrow P Q ||$ x -axis
$\Rightarrow$ slope of $P Q=0$
(ii)$\theta=90^{\circ} $ $ \ \Rightarrow R Q ||$ y-axis
$\Rightarrow$ slope of $PQ=n \cdot d$.
Example 7
Find the slope of the line passing through the points $(2,3)$ and $(4,9)$.
Slope of PQ
in $m=\frac{y_2-y_1}{x_2-x_1}$
$=\frac{9-3}{4-2}$
$=\frac{6}{2}=3$
$\therefore$ Slope of line $P Q=3$
Parallel & perpendicular lines
1.Parallel Lines
Thank you