Euler’s Number
e=limn→∞(1+n1)n
Consider (1+n1)n
The kth term for k⩽n can be obtained from Binomial Theorem.
The kth term for k= 0,1,2,…n is
nCk(n1)k
=k!(n−k)!n!nk1
=k!n(n−1)⋯(n−k−1)nk1
=k!1(1−n1)(1−n2)⋯(1−nk−1)
As n→∞ k!1
∴ The limit of (1+n1)n
→0!1+1!1+⋯+k!1+⋯
The infinite series can be seen as
1+1+2!1+3!1+⋯⋅⋅
This is called Euler’s Number.
This is an irrational number
2⋅718281828459045230365
2<e
Check if e is greater than 3 or not.
Solution:
Consider 2!1+3!1+4!1+⋯
=21+2⋅31+2⋅3⋅41+2⋅3⋅4⋅51+⋯
=21+2⋅21+2⋅2⋅21+241+⋯
=21+221+231+241+⋯
=21(1−211)=1
2<e<2+1=3
Let us consider ex for some real or complex x. What is the series for ex ?
ex=1+x+2!x2+3!x3+
Intuitive idea
Consider e2=e×e
limn→∞(1+n1)2n
=limn→∞((1+n1)2)n
=limn→∞(1+n2+n21)n
The kth term for 0≤k≤n
is nCk(n2+n21)k
=k!(n−k)!n!nk1(2+n1)k
=k!1(1−n1)⋯(1−nk−1)(2+n1)k
limn→∞k!12k=k!2k
(for a fixed k )
∴e2=0!20+1!21+⋯+k!2k+⋯
or 1+1!2+2!22+⋯+k!2k+⋯
This gives the idea for
ex=1+x+2!x2+3!x3+⋯
e−x=1−x+2!x2−3!x3+⋯
Considers the power eix
=1+ix+2!(ix)2+3!(ix)3+4!(ix)4+5!(ix)5+6!(ix)6+⋯
=1+ix−2!x2−i3!x3+4!x4+i5!x5⋯
==cosx(1−2!x2+4!x4−6!x6⋯)+i=sinx(x−3!x3+5!x5⋯)
eix=cosx+isinx
Find the value of
1!1+2!2+3!3+⋯.
Solution:
1!1+2!2+3!3+⋯=1!1+1!1+2!1+3!1⋯.
This is also =e.
1) 1!x+2!2x+3!3x+⋯
=x(1!1+2!2+3!3+⋯)=xe
2) ∑n=0∞(n−1)!1=∑n=1∞(n−1)!1
=∑m=0∞m!1 where m=x−1
=e.
∑n=0∞(n−2)!1=∑n=2∞(n−2)!1
=0!1+1!1+2!1+⋯
=e
∑i=0∞i!i2=∑i=1∞i!i2
The kth term =k!k2=(k−1)!k
=((k−1)!k−1+1)=(k−1)!k−1+(k−1)!1
=∑k=2∞(k−2)!1+∑1∞(k−1)!1
=e+e=2e
∑n=0∞n!n3=∑n=1∞(n−1)!n2
=∑n=1∞(n−1)!(n−1)2+2n−1
=∑n=1∞(n−2)!(n−1)+2∑∞(n−1)!n−∑n=1∞(n−1)1
=∑n(n−2)!(n−2)+1+2∑(n−1)!n−1+1−∑(n−1)1
=∑(n−3)!1+∑(n−2)!1+2∑(n−2)!1
+2∑(n−1)!1−(n−1)!1
=e+e+2e+2e−e=5e
Consider 1!1+2!1+2+3!1+2+3+⋯
We can see the kth term is k!∑1ki=k!2k(k+1)
=21(k!k+k!k+1)
=21((k−1)!1+(k−1)!1+k!1)
∴ Taking sum, ∑i=1∞i!1+2+3+⋯=i
=21(∑(k−1)!1+∑(k−1)!1+∑k!1)
=23e
Find the coefficient of x4 in (1+2x+3x2)e−x.
Solution:
(1+2x+3x2)(1−x+2!x2−3!x3+4!x4⋯)
=4!1−3!2+2!3
=241−62+23
=241−8+36=2429
Find the value of
1+5ln3+2!(5ln3)2+⋯
=e5ln3
=eln35
=35
Find the expansion for cosxex.
Solution:
Let the corresponding series be
C0+C1x+C2x2+C3x3+…
ex=cosx(C0+C1x+C2x2+C3x3+…)
(1+x+2!x2+3!x3+⋯)
=(1−2!x2+4!x4⋯)
(C0+C1x++C2x2+C3x3+⋯)
x0 | 1 | C0×1 | ⇒C0=1 |
---|---|---|---|
x1 | 1 | C1×1 | ⇒C1=1 |
x2 | 21 | C2×1−2C0 | ⇒C2−21=21 |
x3 | 3!1 | C3−2C1 | ⇒61=C3−21 |
∴C2=1
∴C3=32
The coefficient & cosxex are
C0=1
C1=1
C2=1
C3=32
C4=21
C5=103
⋮