Taylor series expansion
f(x)=f(a)+f(1)(a)1!(x−a)
…+f(2)(a)2!(x−a)2
…+f(k)(a)k!(x−a)k
Find the Taylor Series approximation of tan−1(x) up to x5.
f(x)=tan−1(x)f(0)=0
f′(x)=1+x21=(1+x2)−1∴f′(0)=1
f(2)(x)=dxd(1+x2)−1
=−(1+x2)−2(2x)
=−2x(1+x2)−2
∴f(2)(x)=0 at x=0
f(3)(x)=dxd(−2x(1+x2)−2)
=−2(1+x2)−2+(−2x)(−2)(1+x2)−3(2x)
=−2(1+x2)−2+8x2(1+x2)−3
∴f(3)(0)=−2
f(4)(x)=dxd(−2(1+x2)−2+8x(1+x2)−3)
=4(1+x2)−3(2x)+16x(1+x2)−3+8x2+(1+x2)−42x
=8x(1+x2)−3+16x(1+x2)−3+8x3(1+x2)−42x
=24x(1+x2)−3+8x3(1+x2)−4
∴f(4)(0)=0
f(5)(x)=dxd(24x(1+x2)−3+8x3(1+x2)−4)
=24(1+x2)−3+24x(1+x2)−4(2x)+…
f(5)(0)=24
f(0)=0
f(1)(0)=1
f(2)(0)=0
f(3)(0)=−2
f(4)(0)=0
f(5)(0)=24
∴ The 5th degree polynomial approximation for tan−1(x) is:
x−3!2x3+5!24x5.
≡x−3x3+5x5.
dxdtan−1(x)=1+x21
The expansion of 1+x21
i.e (1+x2)−1
1−x2+x4−x6…
∫1+x21dx=∫1dx−∫x2dx+∫x4dx…+C
tan−1x=x−3x3+5x5…+C
By putting x=0
we find that c=0
x−3x3+5x5
Consider sin−1x
we knows that dxdsin−1(x)
=1−x21
=(1−x2)−21
(1−x2)−21
=1+(−21)(−x2)+2!(−21)(−21−1)(−x2)2
+3!(−21)(−21−1)(−21−2)(−x2)3
=1+2x2+81⋅3x4+8×3!1⋅3⋅5x6
=1+2x2+83x4+48154x6+⋯
∴∫1−x21dx
=∫1dx+∫2x2dx+∫83x4dx+∫4815x6dx…+c
or sin−1(x)=x+3!x3+403x5+48×715x7…+c
Putting x=0
we get c=0
∴ Taylor series expansion for sin−1(x)
=x4+3!x3+403x5+16×75x7⋯
What is the expansion for cos−1(x)?
f′f′′f′′′…
sin−1x=2π−cos−1x
or cos−1x=2π−sin−1x
∴cos−1(x)
=2π−x−3!x3−403x5−16×75x7…
Let us consider log(1+x)
f(x)=log(1+x)∴f(0)=log(1)=0
f′(x)=1+x1∴f′(0)=1
f′′(x)=−(1+x)−2∴f′′(0)=−1
f′′′(x)=2(1+x)−3∴f′′′(0)=2
f′′′′(x)=−6(1+x)−4∴f′′′′(0)=−6
∴log(1+x)
x−2x2+23!x3−64!x4⋯
=x−2x2+3x3−4x4⋯
∴ The series is: ∑k=1∞kxk(−1)k−1
Since we know expansion of 1+x1
1+x1=(1+x)−1
=1−x+x2−x3+x4…
∫1+x1dx=∫1dx−∫xdx+∫x2dx−∫03x3dx+∫x4dx…+C
∴log(1+x)=x−2x2+3x3−4x4+5x5⋯
To determine the value of C
At x=log(1+x)=log(1)=0
∴C=0
By putting x=−x
log(1−x)=−x−2x2−3x3−4x4…
log(cosx)x∈(−2π,2π)
f(x)=log(cos(x))∴f(0)=log(1)=0
f′(x)=cosx1(−sinx)=−tanx∴f′(0)=0
f′′(x)=−(1+tan2x)∴f(2)(0)=−1
f′′′(x)=−2tanx(1+tan2)
=−2tanx−2tan3x
∴f′′′(0)=0
f(′′′′)(x)=
−2(1+tan2x)−6tan2x(1+tan2x)
=−2−2tan2x−6tan2x−6tan4x
=−2−8tan2x−6tan4x
∴f(′′′′)(0)=−2
f(′′′′′)(x)=−16(tanx)(1+tan2x)−24tan3x(1+tan2x)
=−16tanx−16tan3x−24tan3x−24tan5x
∴f(5)(x)=−16tanx−40tan3x−24tan5x
∴f(5)(0)=0
∴f(6)(x)=−16(1+tan2)+…
f(6)(0)=−16
∴ we find that for log(cos(x))
f(0)=0
f′(0)=0
f(2)(0)=−1
f(3)(0)=0
f(4)(0)=−2
f(5)(0)=0
f(6)(0)=−16
∴ The series expansion is:
−2x2−24!x4−166!x6⋯
=−2x2−12x4−45x6⋯
We can also do it as follows:
log(cosx)=log(1+(cosx−1))
Euler’s constant “e”.
limn→∞(1+n1)n
where does (1+x1)x converge?
n=2(1+0.5)2=2.25
=10(1+0.1)10=2.594
=100(1+0.01)100=2.7048
=1000(1+0.001)1000=2.7169
=10000(1+0.0001)10000=2.7181
=100000(1+0.00001)100000=2.7183
As n→∞
(1+n1)n→2⋅718281828459045…
Euler’s Number.
(1+n1)n
What is the kth term?
Solution:
For a given k if we consider n>k
k!n(n−1)⋯(n−k−1)(n1)k
nck(n1)k
k!1(1−n1)(1−n2)⋯(1−nk−1)
∴ As x→∞ the kth term in k!1
∴ The series (1+n1)n
→1+1+2!1+3!1+⋯+k!1+⋯