$\quad \log (\cos x) \quad \quad x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
$ f(x)=\log (\cos (x)) \quad \therefore f(0)=\log (1)=0$
$ f^{\prime}(x)=\frac{1}{\cos x}(-\sin x)=-\tan x \quad\therefore f^{\prime}(0)=0$
$f^{\prime\prime}(x)=-\left(1+\tan ^2 x\right)\quad \therefore f^{(2)}(0)=-1$
$f^{\prime\prime\prime}(x)=-2 \tan x\left(1+\tan ^2\right)$
$\quad\quad\quad=-2 \tan x-2 \tan ^3 x $
$\therefore f^{\prime\prime\prime}(0)=0$