$f^{(3)}(x)= 3 \cdot 2 \cdot 1 \cdot a_3$
$ \quad +4 \cdot 3 \cdot 2(x-a)+…..$
terms with higher powers of $(x - a)$
$ \therefore f^{(3)}(a)=3 ! a_3$
$ \therefore a_3=\frac{f^{(3)}(a)}{3 !}$
$f^{(4)}(x)=4 \cdot 3 \cdot 2 \cdot 1 a_4$ + power of $(x - a)$
$\therefore a_4=\frac{f(4)(a)}{4 !}$
This expansion is called Taylor Series expansion of $f(x).$