(1−x)−n→ integer
(1−x)p/q→ rational number
In particular we were looking at (1−x)−21.
What is the series expansion for (1−x)21?
Solution:
We have (1−x)21×(1−x)21=(1−x)
∴ If we write
(1−x)21=a0+a1x+a2x2
then by multiply it with itself we should get (1−x).
Let (1−x)21=a0+a1x+a2x2+⋯
∴(a0+a1x+a2x2+…)×(a0+a1x+a2x2+...)
=1−x
∴ coeff of x0=a02=1
Taking the (+)ve root a0=1
coeff of x=2a0a1=−1
∴2a1=−1
∴a1=−21
Coeff of x2, a0a2+a12+a2a0=0
∵∄x2 in (1−x)
∴2a2+a12=0
or 2a2+41=0
∴a2=−81
∴ We can write (1−x)21=1−x as 1−21x−81x2+⋯
If x is small we aften ignore higher powers.
In a similar way we can find 1+x.
say 1+x=a0+a1x+a2x2+⋯
∴(a0+a1x+a2x2+⋯)×(a0+a1x+a2x2)⋯=1+x
a02=1 or a0=1 (Taking +ve value)
a0a1+a1a0=1
or 2a0a1=1∴a1=21
a0a2+a12+a0a2=0
or 2a2+a12=0
∴2a2=−a12=−41
∴a2=−81
∴ We get 1+x
=1+21x−81x2….
Find 17.
Solution:
We can write it as
(1+16)21 ← we are making a mistake
In (1+x)← ∣x∣<1
We write in a different way
1621(1+161)1/2
∣161∣<1
To obtain 17
we write it as 1621(1+161)21
=4×(1+161)21
In the expansion of (1+x)21
=1+21x−81x2
Putting x=161 we get
=1+321−8×1621
∴17=4×(1+321−8×1621)
4×1=4
4×321=81=0.125
4×(−8×1621)=−2×1621
=−2×2561=−5121
=−0.0019
∴17=4.125−0.0019
=4.1231
Therefere the final expansion is (1+x)p/q
=1+qpx+2!qp(qp−1)x2+3!qp(qp−1)(qp−2)x3+…..
What we have done so far is not a proof, we have verified certain results.
The basic assumption was:
Weierstrass Approximation Theorem.
Every continous function in a closed interval can be approximated as closely as possible by a polynomial function.
(1+x)k← negative integral or rational.
How to obtain the coefficients of the given function f(x)?
it is possible to have such a polynomial expansion about a point a.
f(x)=a0+a1(x−a)+a2(x−a)2+a3(x−a)3+……
Advantage of a polynomial function is that
If it is of degree n, it can be differentiatal (x+1) times.
& If we take an infinite polynomial, we can differentiate infinite number of times.
f(x)=a0+a1(x−a)+a2(x−a)2+a3(x−a)3+..
∴f(a)=a0∴a0=f(a)
f(1)(a)=a1+2a2(x−a)+3a3(x−a)2+4a4(x−a)3+…..
f(2)=2a2+3⋅2a3(x−a)+4⋅3⋅a4(x−a)2+…..
∴f(2)(a)=2⋅a2
or a2=f(2)(a)/2
f(3)(x)=3⋅2⋅1⋅a3
+4⋅3⋅2(x−a)+…..
terms with higher powers of (x−a)
∴f(3)(a)=3!a3
∴a3=3!f(3)(a)
f(4)(x)=4⋅3⋅2⋅1a4 + power of (x−a)
∴a4=4!f(4)(a)
This expansion is called Taylor Series expansion of f(x).
∴ f(x) can be written as:
f(a)+f(1)(a)(x−a)+2!f(2)(a)(x−a)2
+3!f(3)(a)(x−a)3
+4!f(4)(a)(x−a)4+…….
Let us consider (1−x)−2 ∴f(x)=(1−x)−2
f(1)(x)=−2(1−x)−3(−1)=2(1−x)−3
f(2)(x)=−3⋅2⋅(1−x)−4(−1)=3!(1−x)−4
f(3)(x)=4!(1−x)−5
∴f(0)=1
f(1)(0)=2
f(2)(0)=3!
f(4)(0)=4!
∴ we get
f(x)=f(0)+2(x−0)+3!2!(x−0)2+4!3!(x−0)3
∴ We can write
f(x)=f(a)+f(1)(a)⋅(x−a)+f(2)(a)2!(x−a)2+f(3)(a)3!(x−a)3
+f(4)(a)4!(x−a)4+……
Putting the values:
f(x)=(1−x)−2
=f(0)+f(1)(0)x+f(2)(0)2!x2+f(3)(0)3!x3+f(4)(0)4!x4
f(0)+2⋅x+3!2!(x−0)2+4!3!(x−0)3+…..
=1+2x+3x2+4x3+⋯
These are the terms that we have already seen.
Looking Beyond Polynomials.
Consider trigonometric Functions:
sinx
cosx
tanx
0∘,π/6,π/4,π/3,π/2,π
15∘,18∘ etc.
sin1∘,sin5∘
Consider sinx.
f(x)=sinx ∴f(0)=0
f(1)(x)=cosx ∴f(1)(0)=1
f(2)(x)=−sinx ∴f(2)(0)=0
f(3)(x)=−cosx ∴f(3)(0)=−1
f(4)(x)=sinx ∴f(4)(0)=0
f(5)(x)=cosx ∴f(5)(0)=1
From Taylor’s series
f(x)=f(0)+f’(0)(x−0)+f(3)(0)2!(x−a)2
+f(3)(0)3!(x−a)3+f(4)(0)4!(x−a)4+f(5)(0)5!(x−a)5+…
f(0)=0
f(1)(0)=1
f(2)(0)=0
f(3)(0)=−1
f(4)(0)=0
f(5)(0)=+1
Putting these values we get,
sin(x)=sin(0)+1⋅(x−0)+0⋅2!(x−0)2−13!(x−0)3+0⋅4!(x−0)4+1⋅5!(x−0)5+⋯
=1⋅x−3!x3+5!x5
=x−3!x3+5!x5−7!x7+⋯
Similarly we can work out for cosx.
cosx=1−2!x2+4!x4−6!x6⋯
Find the Taylor series expansion for tan(x).
Again we expand about 0.
f(0)=tan(0)=0
f(1)(x)=dxdtanx=sec2x
=1+tan2x
∴f(1)(0)=1.
f(2)(x)=dxd(1+tan2x)
=2tanx(sec2x)
=2tanx(1+tan2x)
=2tanx+2tan3x
∴f(2)(0)=0.
f(3)(x)=2(1+tan2x)+6tan2x(1+tan2x)
=2+2tan2x+6tan2(x)+6tan(4)x
∴f(3)(0)=2
f(4)(x)=dxd(8tan2x+6tan4x)
=16tanx+16tan3x+24tan3x(1+tan2x)
∴f(n)(0)=0
f(5)(x)=16(1+tan2x)+ terms with tanx
∴f(5)(0)=16
tanx=0+1!1x+02!x2
+2⋅3!x3+0⋅4!x4+165!x5+⋯
tanx=0+x+0⋅x2+2⋅3!x3+0x4+165!x5
=x+3x3+152x5+higher powers of x