$\left(1+r+r^2+\cdots\right) \times \left(1+r+r^2+\cdots\right)$
coeff of $r^0=1 \quad \therefore a_0=1$
Coeff of $r=(1+1)=2 \quad \therefore a_1=2$
coeff of $r^2=(1+1+1)=3 \quad \therefore a_2=3$
coeff of $r^3=4 \quad \therefore a_3=4$
In ganeral coeff of $r^k={k+1}$
$\therefore (1-r)^{-2}$
$=1+2 r+3 r^2+4 r^3+ \cdots$