$\log 2, \log \left(2^x-1\right)$ and $\log \left(2^x+3\right)$ are $\text { in } A \cdot P \text {. }$
$\therefore \log \left(2^x-1\right)=\frac{\log 2+\log \left(2^x+3\right)}{2}$
$ 2 \log \left(2^x-1\right) =\log 2+\log \left(2^x+3\right)$
$ =\log \left(2 \cdot\left(2^x+3\right)\right)$
$ \log \left(2^x-1\right)^2=\log \left(2 \cdot\left(2^x+3\right)\right)$
$ \left(2^x-1\right)^2=2 \cdot\left(2^x+3\right) $