You drop a ball
From “a” meters above a flat surface. Each time the ball hits the surface after falling a distance h, it rebounds a distance rh, where r is positive but less than 1.
Find the total distance the ball travels up and down. Find the total no. of seconds the ball is travelling assuming a = 4 m.
Total distance S
$= a + ra + ra + r^2a + r^2a + ……….$ $= a + 2ra + 2r^2a + ……….$
GP with first term 2ra and common ratio r.
$=a+\frac{2 r a}{1-r}$
$ S=u t+\frac{1}{2} g t^2$
$S=\frac{1}{2} g t^2(\because u=0)$
$S=4.9 t^2$
$\Rightarrow t=\sqrt{S / 4.9}$
Can you make an infinite series of non-zero terms that converge to any number you want?
Let L be a given number.
Let $a, ar, ar^2, ……$
be a geometric progression.
$a+ar +a r^2+\ldots .$
is convergent for |r| < 1
$\sum_{n=1}^{\infty} a r^{n-1}=\frac{a}{1-r}$
$\frac{a}{1-r}=L$,
where
$|r| < 1$
Thus selecting r such that $|r| < 1$, and $a = L(1 - r)$
$L(1 - r) + Lr(1 - r) + Lr^2(1 - r) + ……..$
Find the sum of areas of all squares.
Outer most square has area $ A = 4m^2$
BC = $\sqrt{A B^2+A C^2}$
$ =\sqrt{(\frac{a}{2})^2+(\frac{a}{2})^2}$
$=\sqrt{\frac{2 a^2}{4}}$
$=\frac{a}{\sqrt{2}}$
Areas would be
$a^2,(\frac{a}{\sqrt{2}})^2,(\frac{\frac{a}{\sqrt{2}}}{\sqrt{2}})^2, \ldots$
ie $a^2, \frac{a^2}{2}, \frac{a^2}{4}, \ldots$.
Sum of Areas
$=a^2+\frac{a^2}{2}+\frac{a^2}{4}+\cdots$
$=\frac{a^2}{1-\frac{1}{2}}=2 a^2$
$a^2=4$
Sum of areas
$= 2 \times 4$
$= 8 m^2$
Second term of a GP is 1000 and common ratio is $\frac{1}{n}$, where $n \in \mathbb{N}$
Let “$P_n$” be product of “n” terms. If $P_6 > P_5$ and $P_6>P_7$, what is sum of all possible values of n.
Note that all terms of this GP are positive.
$P_6$ = Product of six terms.
$=P_5 \cdot t_6$
$t_n =n^{th}$ term
Given $P_6 > P_5$
$t_6>1$ $P_7=P_6 \cdot t_7$
Given $P_7<P_6 \quad \therefore t_7<1$
Thus $t_6>1$ and $t_7<1$
A G.P $a, ar, ar^2, ar^3$
$ a\rarr t_1$,
$ ar\rarr t_2$,
$ ar^2\rarr t_3$,
$ ar^3\rarr t_4$, …….
$\therefore t_6$ = Six term
= second term. $r^4$
= 1000 $r^4$
$t_7$ = Seventh terms
$=$ Second term. $r^5$
$= 1000 r^5$
$t_6>1 \Rightarrow 1000 r^4>1$
$\Rightarrow r^4>\frac{1}{1000}$
$\Rightarrow \frac{1}{n^4} >\frac{1}{1000}$
$\Rightarrow n^4<1000$
$t_7<1 \Rightarrow 1000 r^5<1$
$\Rightarrow 1000 \frac{1}{n^5}<1$
$\Rightarrow n^5>1000$
Thus we search for all possible values of n such that $n^4<1000$ and $n^5>1000$.
ie, $n < 6$ and $n \geqslant 4$ Thus possible values of $n$ are $4$ and $5$.
required sum $= 9.$
Sum of first 12 terms of a G.P is equal to sum of first 14 terms of same GP . Given that sum of first 17 terms is 92. What is the third term in GP?
$S_{12} = S_{14}$
$S_{14} = S_{12}+t_{13}+t_{14}$
$\Rightarrow S_{12} = S_{12}+t_{13}+t_{14}$
i.e.
$t_{13}+t_{14}=0.$
i.e. $t_{13}+r t_{13}=0.$
i.e. $t_{13}(1+r)=0.$
i.e. $t_{13}=0$ or $r = -1$
$t_{13} = 0$ is NOT possible
$\therefore r = -1$
Let the first term be a
$a, ar, ar^2, ……$
$= a, -a, a, -a, …….$
$\therefore$ Sum of n terms of this G.P
$= 0$ if n is even
$= a$ if n is odd
Sum of first $17$ terms $= 92$
$a = 92$
$\therefore$ Third term $= 92$
The sum of first $25$ terms of an AP is $525$ and the sum of next $25$ terms is $725.$ What is the common difference?
Let $t_1, t_2 \cdots t_{25}$,
$t_{26}, \ldots t_{50}, \ldots$ be the terms of given A.P.
Given that
$S_{25} =\sum_{i=1}^{25} t_i=525$
$K_{25} =t_{26}+t_{27}+\cdots+t_{50}$
$= 725$
$t_{26} =t_1+25 d$
$t_{27} =t_1+26 d$
$=t_1+d+25 d$
$=t_2+25 d$
$t_{28} =t_1+27 d$
$=t_1+2 d+25 d$
$t_{28}=t_3+25 d$ $\vdots$
$t_{50}=t_{25}+25 d$
$k_{25} = t_{26}+\ldots+t_{50}$
$=(t_1+25 d)+(t_2+25 d)$
$+\cdots+(t_{25}+25 d)$
$=(t_1+t_2+\cdots+t_{25})+ \underbrace {25d + 25d + ….. + 25d} _{25 \text{terms}}$
$k_{25} = S_{25}+25.25 d$
$\Rightarrow d =\frac{k_{25}-S_{25}}{625}$
$=\frac{725-525}{625} \\ = \frac{200}{625} \\ = \frac{8}{25}$
======