Let $a_1, a_2\cdots$ be the A.P.
Let us denote its common difference by “d”
$S_1=a_1+a_2+\ldots+a_n $
$=\frac{n}{2}\left[2 a_1+(n-1) \cdot d\right] $
$S_2=a_1+a_3+a_5+\cdots+a_n$
$a_3-a_1 =a_3-a_2+a_2-a_1 $
$=d+d =2 d $
$a_5-a_3 =a_5-a_4+a_4-a_3 =2 d$