###
Sequence And Series L-5
###
Sequence & series lecture-5
###
Sequence And Series L-5
###
Arithmetic progression (AP)
- A sequence $(a_n)^{\infty}_{n=1}$ is called an AP, if - $ a_{n+1}=a_n+d \ \ \forall n \geqslant 1$ - i.e. If $\\{a_ n\\}_ {n=1}^{\infty}$ is an AP with $a_ 1 =a$, called first term and common difference d, then AP can be written in standard form as - $a, a+d, a+2 d, \cdots$ - $n^{\text {th }} \text { term of A.P } =a+(n-1) d$
###
Sequence And Series L-5
###
Property
- **1)** If $\left(a_n\right) _{n=1}^{\infty}$ is an AP, then sequence - $\left(b_n\right)_{n=1}^{\infty}$ obtained by $b_n=a_n+k \ \ \forall n$ is an AP.
###
Sequence And Series L-5
###
Property
- **2)** If ${(a_ n)}_ {n=1}^{\infty}$ is an AP, then the Sequence $(b_ n)_{n=1}^{\infty}$ obtained by subtracting a constant "$k$" to each term is again an AP. - $b_n=a_n-k \ \ \forall n \geqslant 1$
###
Sequence And Series L-5
###
Property
- **3)** If $\left(a_n\right)_{n=1}^{\infty}$ is an AP, then sequence obtained by multiplying each term of $\\{a_n\\}$ with a constant is again an AP. - $\left(a_n\right)_{n=1}^{\infty} \text { is an } A P$ - $a_{n+1}-a_n=d$ - $\text { Consider }\left(b_n\right)_{n=1}^{\infty} \ \ \forall n \in \mathbb{N}$ - $b_{n+1}-b_n$ - $ \ \=c a_{n+1}-c a_n$ - $\ \ =c\left(a_{n+1}-a_n\right)$ - $ \quad =c d \ \ \forall n \in \mathbb{N}$
###
Sequence And Series L-5
###
Property
- **4)** If $\left(a_ n\right)_{n=1}^{\infty}$ is an AP, then sequence - ($b_n$) obtained by dividing each term of $\left(a_n\right)$ with $a$ - non-zero constant remains to be an AP.
###
Sequence And Series L-5
###
Question 1
- Let $a, b$ be given numbers. Can we "insert" a number $A$ such that $a, A, b$ are terms of an AP ? - **Solution:** - $ \begin{aligned} & A-a=b-A \\\ \Rightarrow & 2 A=a+b \\\ \Rightarrow & A=\frac{a+b}{2} \end{aligned} $
###
Sequence And Series L-5
###
Arithmetic mean
- Given two numbers $a, b$ the number $\frac{a+b}{2}$ is called - Arithmetic Mean (AM) of $a$ and $b$. - $A M(a, b)=\frac{a+b}{2}$
###
Sequence And Series L-5
###
Question 2
- Let $a$ and $b$ be two numbers given. - Can we insert numbers - $A_1, A_2\cdot\cdot\cdot A_n$, - So that - $a, A_1, A_2$.. $A_n, b$ are successive terms of a sequence which is AP?
###
Sequence And Series L-5
###
Solution
- $a, A_1, A_2 \ldots A_n, b$ are in AP. - The $(n+2)$ th term $=a+(n+2-1) d$ - $b=a+(n+1) d$ - $\Rightarrow d=\frac{b-a}{n+1}$ - Then - $A_1=a+d=a+\frac{b-a}{n+1}$ - $A_2=a+2 d=a+2\frac{(b-a)}{n+1}$
###
Sequence And Series L-5
###
Solution
- $A_3 =a+3 d$ - $=a+3 \cdot \frac{b-a}{n+1}$ $\vdots$ - $ A_n =a+n d =a+n \cdot \frac{b-a}{n+1} $
###
Sequence And Series L-5
###
Remarks
- AP, $a_{n+1}-a_n=d \$ $\forall n \in \mathbb{N}$ - Std form $a, a+d, a+2 d +\cdot\cdot\cdot\cdot\cdot$ - $n^{\text {th }}$ term $a_n=a+(n-1) d$ - Given two numbers $a$ and $b$, - $\operatorname{AM}(a, b)=\frac{a+b}{2}$
###
Sequence And Series L-5
###
Question 3
- Let an AP with first term " $a$ " and common difference " $d$ " is given. - $a, a+d, a+2 d\cdot\cdot\cdot\cdot$ - What is the sum of first $n$ terms of AP? - **Solution:** - $a+(a+d)+\cdots+(a+(n-1) d)$
###
Sequence And Series L-5
###
Example
- $\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 \\\ \cdots & & 100 \\\ 1 & 2 & 3 & 4 & 5 \end{array}$ - 100, 99, 98........ - Total sum $=50 \times 101$
###
Sequence And Series L-5
###
Question 3
- What is sum of $n$ terms of the AP $a, a+d, a+2 d+\cdot\cdot ?$ - **Solution:** - $S_n =a+(a+d) +\ldots+a+(n-1) d$ - $n^{\text {th }} \text { term } a+(n-1) d =l$ - $S_n=a+a+d+\ldots+l$
###
Sequence And Series L-5
###
Solution
- $\begin{aligned} & S_n=l+l-d+l-2 d \cdot\cdot\cdot\cdot + a \\\ & 2 S_n=(a+l)+(a+l) \cdot\cdot\cdot +(a+l) \\\ & 2 S_n=n(a+l) \end{aligned}$ - $\begin{aligned} & S_n=\frac{n}{2}(a+l) \\\ & S_n=\frac{n}{2}[a+a+(n-1) d] \\\ & S_n=\frac{n}{2}[2 a+(n-1) d]\end{aligned}$
###
Sequence And Series L-5
###
Geometric progression
- A sequence $\left(a_n\right)_{n=1}^{\infty}$ - is Said to be a Geometric progression $(G P)$ if no terms are zero and - $\begin{aligned} & \frac{a_{n+1}}{a_n}=r \\ & \forall n \in \mathbb{N}\end{aligned}$ - $r$ is called common ratio.
###
Sequence And Series L-5
###
Example
- $ \begin{aligned} & 3,6,12,24, \ldots . \\\ & \frac{a_{n+1}}{a_n}=2 \quad \forall n \in \mathbb{N} \\\ & \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \cdots \frac{1}{2 n} ; \end{aligned} $
###
Sequence And Series L-5
###
Notes
- If first term is " $a$ " and common ratio is " r " then we can write GP (in std form) as - $a, r a, r^2 a, \ldots . .$ - $\begin{gathered}n^{\text {th }} \text { term } \\ =a r^{n-1}\end{gathered}$
###
Sequence And Series L-5
###
Sum of n terms
- Consider the GP - $a, a r, a r^2, \cdots, a r^{n-1}, \ldots$ - What will be the expression for $S_n$? - $S_n=a+a r+\cdots+a r^{n-1}$
###
Sequence And Series L-5
###
Thank you