###
Sequence And Series L-4
###
Sequence & series lecture-4
###
Sequence And Series L-4
###
Recall series
- Given a sequence $\\{a _n\\}$, the expression $a_1+a_2+a_3+\ldots \ldots$ is called a Series - associated with the sequence $\\{a_n\\}$. - Sequence ordered list of numbers - Series - sum
###
Sequence And Series L-4
###
Finite and infinite series
- If $\\{a_n\\}$ is finite the corresponding Series is finite. If $\\{a_n\\}_{n=1}^{\infty}$ is infinite then corresponding series is infinite. * $a_1+a_2+\cdots+a_n \ \ \rightarrow$ finite series. * $a_1+a_2+ \cdots \ \ \rightarrow $ infinite series
###
Sequence And Series L-4
###
Notation
* $ a_1+a_2+ \cdots +a_n =\sum_{i=1}^n a_i $ * $a_1+a_2 + \cdots =\sum_{i=1}^{\infty} a_i$
###
Sequence And Series L-4
###
Sequence of partial sums
- Consider the Sequence $\\{a_ n\\}_{n=1}^{\infty}.$ - We construct a new sequence $\\{S_ n\\}_{n=1}^{\infty}$ as follows, - $ S_1=a_1 $ - $ S_2=a_1+a_2 $ - $ S_3=a_1+a_2+a_3$ - $S_ n=a_ 1+a_ 2+\cdots+a_ n$ $ \quad \quad =\sum_ {i=1}^n a_i$ $ \vdots$ - The sequence ${S_n}$ is called sequence of Partial sums of the series $\sum_{n=1}^{\infty} a_n.$ - $S_n \rightarrow n^{\text {th }}$ partial sum
###
Sequence And Series L-4
###
Notes
- $S_n=a_1+a_2+\cdots+a_n$ - What will be happen if $n$ becomes larger and larger? - we observe convergence or divergence of $\left(S_n\right)_{n=i}^{\infty}$
###
Sequence And Series L-4
###
Convergent series
- For a given sequence $\\{a_n\\}$ and corresponding series $\sum_{n=1}^{\infty} a_n$, construct sequence $\left(S_n\right)_{n=1}^{\infty}$, the sequence of partial sum. - If $(S_n)^{\infty}$ is convergent, then we say that $\sum_{n=1}^{\infty} a_n$ is convergent.
###
Sequence And Series L-4
###
Divergent series
- If $(S_n)^{\infty}$ is divergent, then we say that $\sum_{n=1}^{\infty} a_n$ is divergent.
###
Sequence And Series L-4
###
Convergence
- If $\underset{n \rightarrow \infty}{\operatorname{Lt}} S_n=L$ - then $\sum_{n=1}^{\infty} a_n=L$ - Sequence - what happens as you progress towards end. - Series "Summable" - $ 1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\cdots $ - $\sum a_n$ arises from the sequence $\left(\frac{1}{2^n}\right)_{n=0}^{\infty}$
###
Sequence And Series L-4
###
Sequence of partial sum
- $ S_1=a_1=1 $ - $S_2=a_1+a_2=1+\frac{1}{2}=\frac{3}{2} $ - $S_3=a_1+a_2+a_3=1+\frac{1}{2}+\frac{1}{4} =\frac{3}{2}+\frac{1}{4}=\frac{7}{4} $ $\vdots$ - $S_n=1+\frac{1}{2}+\frac{1}{3}+\quad+\frac{1}{n}$ - $\left(S_n\right)_{n=1}^{\infty}$ - $S_n=\frac{2^n -1}{2^{n-1}}$ - $S_1=1$ - $S_2=2-\frac{1}{2}$
###
Sequence And Series L-4
###
Sequence of partial sum
- $\begin{aligned} S_3 & =1+\frac{1}{2}+\frac{1}{4} \\\ & =2-\frac{1}{4}\end{aligned}$ - $S_4=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}=2-\frac{1}{8}$ - $\vdots$ - $S_n=\frac{2^n-1}{2^{n-1}}$ - $=2-\frac{1}{2^{n-1}} \ \ n= 1,2,3,\cdot\cdot\cdot$
###
Sequence And Series L-4
###
Sequence of partial sum
- $ 1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+ \cdot\cdot\cdot $ - The sequence of partial sum $\left(S_n\right)_{n=1}^{\infty}$ - $ S_n:=2-\frac{1}{2^{n-1}} $ - $\forall n \in \mathbb{N}$ - $\operatorname{Lt}_{n \rightarrow \infty} \quad S_n=2$ - $\therefore 1+\frac{1}{2}+\frac{1}{4}+\cdots \ \ \text { is convergent }$ - $\begin{array}{r}1+\frac{1}{2}+\frac{1}{4}+\cdots =2\end{array}$
###
Sequence And Series L-4
###
Sequence vs series
* Sequence $\ \longrightarrow$ ordered * Series $\ \longrightarrow$ "Sum"
###
Sequence And Series L-4
###
Arithmetic progression
- $2,4,6,8,10, \ldots 2 n,$ - $ 5,10,15,20,25, \ldots $ - $ 4,3,2,1,0,-1\ldots$
###
Sequence And Series L-4
###
Arithmetic progression
- A sequence in which difference between two consecutive terms remains the same called an Arithmetic Sequence or (AP) - A sequence $ \\{a_ n \\}_{n=1}^{\infty}$ is called arithmetic- sequence or AP if, - $a_{n+1}=a_n+d \quad \forall n \geqslant 1$ - where "$d$" is a real number. - Here " $d$ " is called common difference.
###
Sequence And Series L-4
###
Notes
* $a,$ $a+d, a+2 d\cdot\cdot\cdot\cdot$ is the general form of an AP with first term, " $a$ " and common difference " $d$ ". * $n^{\text {th }}$ term of an AP with first term " $a$ " and common difference "d" is - $a+(n-1) d.$
###
Sequence And Series L-4
###
Facts
- If we add a constant to each term in an AP, the resulting Sequence is again an AP - $ \left(a_n\right)_{n=1}^{\infty}$ - $a_1, a_2, a_3, \ldots$ - $\left(b_n\right)_{n=1}^{\infty} \quad b_n=a_n+d^{\prime}$ - $a_1+d^{\prime}, a_2+d^{\prime}, a_3+d^{\prime} \cdots $
###
Sequence And Series L-4
###
Thank you