Sequence
f:S⟶R
(an)n=1∞ or
Closed form expression
1) (n21)n=1∞
1,41,91,161⋯n21,⋯
n→∞Limn21=0
2) {(−1)n}n−2∞
1,−1,1,−1,........
3) {n2}n=1∞
a1,a2,a3− real no’s
a1+a2+a3=a2+a1+a3=a3+a2+a1
For instance sum of 247, 198 and 2
198+2=200
198+2+247=200+247=447
Decimal expansion
310=3.333...........
3+103+1023+1033+⋯=310
21+41+81+161+⋯.
nth Summand: 2n1
Observation
21+41+81+161+⋯=1
1+2+3+4+⋯ cannot be finite.
1+(2−1)+(31)+(−41)+⋯
[1+(2−1)]+[31+(−41)]+⋯
Suppose we rearrange the terms of given series as follows:
(−21−41−61−81+1)
(−101−121−141−161−181+31)
1+(−21)+(31)+(−41)+⋯
[1+(−21)]+[31+(−41)]+⋯
a1,a2⋯an
a1+a2+a3⋯+an
Sigma notation, ∑
a1+a2+⋯+an=i=1∑nai
=i=1∑nai=j=1∑naj=r=1∑nar
Consider a sequence {ar}r=1∞
am,am+1⋯an
i.e.
am+am+1+⋯+an=i=m∑nai
Find j=1∑5j2
Solution:
j=1∑5j2=12+22+32+42+52
=1+4+9+16+25
=55
Find r=1∑8(−1)r
Solution:
r=1∑8(−1)r=(−1+1)+(−1+1)+(−1+1)+(−1+1)
=0
Given a sequence {an}, the expression, a1+a2+a3+⋯
is called a series.
associated with the sequence {an}.
Sequence -ordered list of numbers
Series - sum