Sequence {an}n=1∞
={a1,a2,a3….ann…1}
we mean a function
f:N⟶R
consider the sequence
{an}n=1∞
Consider {an}n=1∞; an=n
Consider {bn}n=1∞ bn=n1
Write first five terms of the sequence given by the formula,
an=n(n+2)
Solution:
a1=1(1+2)=3a2=2(2+2)=2⋅4=8a3=3(3+2)=3⋅5=15a4=4(4+2)=4⋅6=24a5=5(5+2)=5⋅7=35
{3,8,15,24,35,⋯,⋯,n(n+2),⋯}
Find first 4 terms of the sequence given by an=n⋅4n2+5
Solution:
a1=1⋅412+5=1⋅46=23a2=2⋅422+5=2⋅44+5=2⋅49=29a3=3⋅432+5
a3=3⋅49+5
=3⋅414
=3⋅27=221
a4=4⋅442+5
=4⋅416+5
=4⋅421
=21
23,29,221,21
Find 9th term of the sequence {an}n=1∞
an=(−1)n−1⋅n3
Solution:
a9=(−1)9−1⋅93
=(−1)8⋅93 =81×9 =729
First three terms of the sequence {an}n=1∞
an=an−1−1,n>2
a1=a2=2
Solution:
a1=2,a2=2 given a3=a3−1−1=a2−1=2−1=1
Find first 4 terms of the sequence {an}n=1∞, where
a1=3an=3an−1n⩾2
Solution:
a1=3 given a2=3a1=3⋅3=32a3=3a2=3⋅32=33a4=3a3=3⋅33=34
Consider the sequence {an}n=i∞ where an=n1
1,21,31,41
{0,21,32,43,⋯nn−1,⋯}
{0,21,32,⋯1−n1,⋯.}
{n}n=1∞
{1,2,3,⋯n,⋯}
a10001=10001>100.am>k
{1,−1,1,−1,⋯(−1)n+1,⋯}
Consider the sequence {an}n=i∞
where an=n1
1, 21,31,41,
0,21,32,⋯..1−n1,..
A sequence {an}n=1∞ is said to be convergent if as " n " increases an 's become sofficiently close to a number "L".
L is called limit of the sequence.
Ltn→∞an=L
Consider the
sequence (an)n=1∞
an=n25
{an}n=1∞
5,225,325,425⋯
Ltn→∞n25=0
an=n6+34−7n6
an=n6(1+n63)n6(n64−7)
an=1+n63n64−7Ltn→∞an=1−7=−7