Suppose a,b,c are in arithmetic progression and a2,b2,c2 are in geometric progression.
If a<b<c and a+b+c=3/2, then the value of a is
(1)1/22
(2)1/23
(3)1/2−1/2
(4)1/2−1/3
a,b,c→AP
a=p−r
b=p for some p,p
c=p+r
a+b+c=23
⇒p−r+p+p+r=23
⇒p=21
a=p−r=21−r
a2,b2,c2→G P
(p−r)2,p2,(p+r)2→G P
(p−r)2(p+r)2=p4
(p2−r2)2=p4
⇒p4−2p2r2+r4=p4
⇒r2(r2−2p2)=0
r=0
r2=2p2
r2=21 ⇒r=±21
a<b<c
↓
21
a=21+21 not possible
a=21−21
Suppose the sum of the first n terms of an arithmetic progression is cn2. Then the sum of the square of these n terms is
(1)n(4n2−1)c2/6
(2) n(4n2+1)c2/6
(3) n(4n2−1)c2/3
(4)n(4n2+1)c2/3
The sum of first (n−1) terms
=c(n−1)2
n−th term =cn2−c(n−1)2=c(2n−1)
call r− th term ar
∑r=1nar2=c2∑r=1n(2r−1)2
=4c2∑r=1nr2−4c2∑r=1nr+c2∑r=1n1
=64c2n(n+1)(2n+1)−4c22n(n+1)+c2n
=3c2n((2n+2)(2n+1)−6n−6+3)
=3c2n(4n2+4n+2n+2−6n−3)
=3c2n(4n2−1)
Let bi>1 for 1≤i≤101. Let logb1,logb2,…,logb101 be in arithmetic progression with common difference log2. Suppose a1,a2,…,a101 are in arithmetic progression such that a1=b1 and a51=b51. If s=a1+⋯+a51 and t=b1+⋯+b51, then
(1) s>t and a101>b101
(2) s>t and a101<b101
(3) s<t and a101>b101
(4) s<t and a101<b101
logb2=logb1+log2
=log2b1 ⇒b2=2b1
logb3=logb2+log2
=log2b1+log2
=log22b1
b3=22b1
bi=2i−1b1∀2⩽i⩽101
t=b1+b2+b3+⋯+b51
=b1+2b1+22b1+⋯+250b1
=b1(↓1+2+22+⋯+250)
(251−1)
=b1(251−1)
s=a1+a2+a3+⋯+a51
=a1+(a1+d)+(a1+2d)+⋯+(a1+50d)
d = common difference of a1,…,a101
=51a1+d(↓1+2+⋯+50)
250×51
a51=b51
a1=b1
a51=a1+50d
⇒b51=b1+50d
⇒d=50b51−b1=50(250−1)b1
Let a1,a2,a3,… be in harmonic progression with a1=5 and a20=25.
Then the least positive integer n for which an<0 is
(1)22
(2)23
(3)24
(4)25
an=b+(n−1)d1 for some b,d
a1=b1
b=51
a20=b+19d1⇒b+19d=a201=251
b=51
⇒d=−25×194
an<0
an=b+(n−1)d1
b+(n−1)d<0
51+(n−1)(−25×194)<0
⇒1+(n−1)(−5×194)<0
⇒(n−1)>45×19⇒n>45×19+1=499
n⩾25
Suppose four distinct numbers a1,a2,a3,a4 are in geometric progression. Let b1=a1 and bi=bi−1+ai for i=2,3,4.
Statement 1: The numbers b1,b2,b3,b4 are neither in arithmetic progression, nor in geometric progression.
Statement 2: The numbers b1,b2,b3,b4 are in harmonic progression.
(1) Statement 1 is false, Statement 2 is true.
(2) Statement 1 is true, Statement 2 is true, Statement 2 is a correct explanation of Statement 1.
(3) Statement 1 is true, Statement 2 is true, Statement 2 is not a correct explanation of Statement 1.
(4) Statement 1 is true, Statement 2 is false.
b1=a1
b2=b1+a2=a1+a2
b3=b2+a3=a1+a2+a3
b4=b3+a4=a1+a2+a3+a4
b2−b1=a2
b3−b2=a3, a2=a3
b2−b1=b3−b2 ⇒2b2=b1+b3
b1,b2,b3 are not in AP
ai=a1ri−1 for i=2,3,4
↓
common ratio of a1,a2,a3,a4
Note
a1=0, r=0
b2=a1+a1r=a1(1+r)
b3=a1+a1r+a1r2=a1(1+r+r2)
b4=a1+a1r+a1r2+a1r3=a1(1+r+r2+r3)
b1b3=b22( if b1,b2,b3 are in GP)
a1⋅a1(1+r+r2)=a12(1+r)2
or a1=0,
(1+r+r2)=(1+2r+r2)
For r=0 does not hold.
b1b3=b22
b1,b2,b3,b4 are not in GP
If b1,b2,b3,b4 are in HP, then
b11+b31=b22
i.e. a11+a1(1+r+r2)1=a1(1+r)2
i.e. 1+r+r21+r+r2+1=1+r2
i.e. (1+r)(2+r+r2)=2(1+r+r2)
i.e. 2+r+r2+2r+r2+r3=2+2r+2r2
ie. r(1+r2)=0
i.e. r=0 or r=±i
Recall r=0
if r=±i
b4=a1(1+r+r2+r3)=0
b1,b2,b3,b4 can not be in HP
a2=a1+d
Sp=∑i=1pai
=pa1+(1+2+⋯+(p−1))d
=3p+2p(p−1)d
=2p(6+(p−1)d)
SnSm=SnS5n=2n6+(n−1)d25n6+(5n−1)d
=6+(n−1)d30+(25n−5)d
30+(25n−5)d=c{6+(n−1)d}
⇒30+25nd−5d=6c+cnd−cd
⇒(25−c)nd=6c−cd−30+5d
(25−c)d=0
d=0
↓
a2=a1+0=3
or
c=25
↓
6+nd−d30+25nd−5d=25
⇒30+25nd−5d=150+25nd−25d
⇒20d=150−30=120
⇒d=6
a2=a1+6=9
a=rbab∈Z
c=brr=ab
∴r∈Z>0
rb−2b+br=6
⇒b−2br+br2=6r
⇒b(r2−2r+1)=6r
⇒rb(r−1)2=6
a(r−1)2=6 a,r∈Z>0
r=2,a=6
a+1a2+a−14=736+6−14=728=4
Solution:
d→ common difference
ar→ r-th term
ar=a1+(r−1)d
∀r⩾1
ar∈Z>0∀r⩾1
d∈Z>0
∑i=111ai∑i=17ai=116
∑i=17ai=7a1+(1+2+⋯+6)d
26⋅7
=7(a1+3d)
∑i=111ai=11a1+(1+2+⋯+10)d
=11a1+210⋅11d
=11(a1+5d)
11(a1+5d)7(a1+3d)=116
⇒7a1+21d=6a1+30d
⇒ a1=9d
130<a7<140
↓
a1+6d
↓
15d
15130<d<15140d=9
326<d<328
9−31<d<9+31