Let (an)n⩾1 be a sequence. We say
1) (an)n⩾1 is in arithmetic progression (AP)
if ∃ a,d such that ∀n⩾1,
an=a+(n−1)d (d→ common difference)
2) (an)n⩾1 is in geometric progression (GP)
if ∃ a,r such that ∀n⩾1,
an=arn−1 (r→ common ratio)
3) (an)n⩾1 is in harmonic progression(HP)
if ∃ a,d such that ∀n⩾1,
an1=a+(n−1)d
i.e. an=a+(n−1)d1
1) If a,b,c are in AP, then a=b−d,
c=b+d, where
d→ common difference
2) If a,b,c are in GP,
then a=rb,
c=br, where
r→ common ratio
a,b,c are in AP and as well as in GP
a=b−d
c=b+d
ac=(b−d)(b+d)
=b2−d2
a,b,c are in both GP and HP
a=rb,c=br
ac=b2
a=p−d1,b=p1,c=p+d1
ac=p2−d21
⇒bp=1⇒b2p2=1
b2p2−b2d2=1 ⇒b2d2=0
b=0⇒d=0
a=b=c
a,b,c are in both AP and H P
a=b−d1
c=b+d1
a=p−d21
b=p1⇒bp=1
c=p+d21
(b−d1)(p−d2)=1
⇒bp−pd1−bd2+d1d2=1
⇒pd1+bd2=d1d2
(b+d1)(p+d2)=1
⇒=1bp+pd1+bd2+d1d2=1
⇒pd1+bd2=−d1d2
d1d2=−d1d2
⇒d1d2=0
⇒d1=0 or d2=0
a=b=c
For any three positive real numbers a, b, c,
9(25a2+b2)+25(c2−3ac)=15b(3a+c). Then
(1) a,b,c are in arithmetic progression.
(2) b,c,a are in arithmetic progression.
(3) c,a,b are in arithmetic progression.
(4) none of the above statements are true.
(15a)2225a2+ (3b)29b2+ (5c)225c2− (15a)(5c)75ac− (15a)(3b)45ab −(3b)(5c)(15bc)=0
21{(15a−3b)2+(3b−5c)2+(15a−5c)2}=0
are non-negative.
15a−3b=0 ⇒ b=5a
3b−5c=0 ⇒ 3b=5c
15a−5c=0 ⇒ c=3a
a+b
=3c+35c
=2c
b,c,a are in AP
Let a1,a2,…,a49 be in arithmetic progression such that ∑k=012a4k+1=416
and a9+a43=66.
If a12+a22+⋯+a172=140m, then m is equal to:
(1) 34
(2) 68
(3) 33
(4) 66
d→ common difference
ar=a1+(r−1)d
a1+a5+a9+a13+⋯+a49=416
a1+(a1+4d)+(a1+8d)+⋯+(a1+48d)=416
13a1+(0+12 terms 4+8+⋯+48)d=416
4(1+2+3+⋯+12)
=4212⋅13=13⋅24
13a1+13⋅24d=416
⇒13(a1+24d)=416
a1+24d=32
a9+a43=66
⇒a1+8d+a1+42d=66
⇒2a1+50d=66
a1+25d=33
d=1,a1=33−25=8
∑r=117ar2=140 m
ar=a1+(r−1)d
=8+(r−1)
=7+r
⇒∑r=117(7+r)2=140m
⇒49×1749r=1∑171 +14×217×1814r=1∑17r +617×18×35r=1∑17r2=140m
m=1404760=34
For distinct a,b,c, if log(a+c),log(a−c),log(a−2b+c) are in arithmetic progression then
(1) a,b,c are in arithmetic progression.
(2) ab,ac,bc are in arithmetic progression.
(3) a,b,c are in geometric progression.
(4) a,b,c are in harmonic progression.
2log(a+c)+log(a−2b+c)=log(a−c)
⇒log(a+c)(a−2b+c)=log(a−c)2
(a+c)(a−2b+c)=(a−c)2
⇒a2+ca−2ab−2bc+ac+c2=a2−2ac+c2
⇒2(ab+bc)=4ac
2ab+bc=ac
ab,ac,bc are in AP
2ab+bc=aca1,
b1,c1 are in AP
⇒ab+bc=2ac
⇒b=a+c2ac
⇒1/b1=1/c+1/a2
⇒a1+c1=b2
⇒a,b,c are in HP
Let a1,a2,⋯,a10 be in arithmetic progression and h1,h2,⋯,h10 be in harmonic progression. If a1=h1=2 and a10=h10=3, then a4h7 is
(1) 2
(2) 3
(3) 5
(4) 6
a10=a1+9dd→ common difference
⇒3=2+9d
⇒d=91
h1,h2,…,h10 in HP
⇒h11,h21,⋯,h101 in AP
h101=h11+9CC→ common difference
9C=31−21=−61
⇒C=−541
a4=a1+3d
=2+93=37
h71=h11+6c=21−91
⇒h7=718
a4⋅h7=37⋅718=6
Find three numbers a,b,c between 2 and 18 such that
a. their sum is 25 ,
b. the terms 2,a,b are consecutive terms of an arithmetic progression,
c. the terms b,c,18 are consecutive terms of a geometric progression.
Solution:
2<a,b,c<18
a+b+c=25
2,a,b→AP
22+b=a⇒b=2(a−1)
b,c,18→GP18b=c2
⇒c2=36(a−1)
⇒c=6a−1
a+2(a−1)+6a−1=25
⇒3a+6a−1=27
⇒a−9=−2a−1
a2−18a+81=4a−4
⇒a2−22a+85=0
⇒(a−5)(a−17)=0
a=5 or 17
Case -I
a=5,b=8,c=12
b=2(a−1)
c=6a−1
2,5,8→ are in AP with the common difference 3.
8,12,18→ are in GP with the common ratio 23
Case -II
a=17 b=32
Not possible
Let α,β be the solutions of x2−x+p=0 and γ,δ be the solutions of x2−4x+q=0. If α,β,γ,δ are in geometric progression, then integral values of p and q respectively, are
(1) −2,−32
(2) −2,3
(3) −6,3
(4) −6,−32
α+β=1,αβ=p=a2r
γ+δ=4,γδ=q=a2r5
α,β,γ,δ→ are in a GP
[α=a,β=ar,γ=ar2,δ=ar3]
a(1+r)=1
ar2(1+r)=4
r2=4⇒r=±2
a=1+r1=31, when r=2
−1 when r=−2
p=a2r=−2∣r=−2,a=−1
q=a2r5=−32
Let α,β be the solutions of the quadratic equation ax2+bx+c=0. Denote Δ=b2−4ac. If α+β,α2+β2,α3+β3 are in geometric progression, then which of the following statements are definitely true?
(1) Δ=0
(2) bΔ=0
(3) cΔ=0
(4) Δ=0
α+β=−aba=0
αβ=ac
(α+β)(α3+β3)=(α2+β2)2
α3+β3=(α+β)3−3αβ(α+β)
=−a3b3+a23bc=a33abc−b3
α2+β2=(α+β)2−2αβ
=a2b2−a2c=a2b2−2ac
−ab(a33abc−b3)=a4(b2−2ac)2
⇒−3ab2c+b4=b4−4ab2c+4a2c2
⇒ab2c=4a2c2
⇒acΔ(b2−4ac)=0
acΔ=0 as a=0
⇒cΔ=0