(nC0+nC1)(nC1+nC2)(nC2+nC3)⋯(nCn−1+nCn)
=n!C0C1C2…Cn×(n+1)Cn
=n+1C1n+1C2n+1C3⋯n+1Cn
=n+1C1n+1C2n+1C3⋯n+1Cn
=n1!(n−1)!(n+1)n!⋅(n−1)⋅2!(n−2)!(n+1)n!⋯⋅1⋅n!0!(n+1)n!=(n+1)nC1C2…Cn
C0C1+C12C2+C23C3+C34C4+⋯+Cn−1nCn=2n(n+1)r⋅Cr−1Cr=r!(n−r)!r⋅n!⋅n!(r−1)!(n−r+1)!=n−r+1n+(n−1)+(n−2)+(n−3)+⋯+1=2n(n+1)
C0+C1/2+C2/3+C3/4+⋯+Cn/n+1=n+12n+1−1
Solution:
C1+2C2+3C3+⋯nCn=n⋅2n−1n⋅(1+x)n−1
x=1∫C)dx=∫()dx← Not correct +k1+k2
(1+x)n=C0+C1x+C2x2+C3x3+⋯+Cnxn∫01(1+x)ndx=∫01(C0+C1x+⋯+Cnxn)dx[n+1(1+x)n+1]01=n+12n+1−n+11
=∫01C0dx+∫01C1xdx+∫01C2x2dx+⋯+∫01Cnxndx=C0+2C1+3C2+⋯+n+1Cn
2C0+222C1+233C2+244C3+⋯+2n+1n+1Cn=n+13n+1−1
Solution:
∫02C0dx+∫02C1xdx+∫02C2x2dx+…∫02Cnxndx=∫02(1+x)ndx=[n+1(1+x)n+1]02
=2C0+222C1+323C2+⋯+n+12n+1Cn
C0−2C1+3C2−⋯+(−1)nn+1Cn=n+11∫01(x−1)ndx=[n+1(x−1)n+1]01
Find the coefficient of x49 in (x−C1/C0)(x−22C2/C1)(x−32C3/C2)⋯(x−50C492)
Solution:
=−C0C1−22C1C2−32C2C3….−502C49C50
⇒r th term =r2Cr−1Cr=r2r!(50−r)50!=(50−r+1)
1.50+2⋅49+3⋅48+4⋅47+⋯50⋅1r=1∑50r(50−r+1)=r=1∑5051r−r=1∑50r2
=51r=1∑50r−r=1∑50r2=51×250×51−650×51×101=22100
-22100
Find the cofficient of t24 in
(1+t2)12(1+t12)(1+t24)
Solution:
1+1+12C6
30C030C10−30C130C11+30C230C12−30C330C13
+…+30C2030C30
C0Cr+C1Cr+1+…+Cn−rCn=2nCn+r
(x−y)20(x+y)30(y+x)⟶ Coefficient ofy20x40 ? 30C0x3030C00y20x10−30C1x29y30C11y19x11+30C2x28y230C12y18x12=30C20=30C10(x−y)30(y+x)30=(x2−y2)30