Find the cofficient of $t^{24}$ in
$ \left(1+t^2\right)^{12}\left(1+t^{12}\right)\left(1+t^{24}\right)$
Solution:
$ 1+1+{ }^{12} C_6 $
$ { }^{30}C_0 { }^{30}C_{10}-{ }^{30}C_1{ }^{30}C_{11} +{ }^{30}C_2{ }^{30}C_{12}-{ }^{30}C_3{ }^{30}C_{13}$
$ +\ldots+{ }^{30}C_{20} { }^{30}C_{30} $
$ C_0 C_r+C_1 C_{r+1}+\ldots+C_{n-r} C_n={ }^{2 n} C_{n+r}$