Simplify: 2k nC0nCk−2k−1 nC1n−1Ck−1+2k−1nC2n−2Ck…(−1)knCkn−kC0
Solution:
ith term →∑i=0i−k(−1)i2k−inCin−iCk−i
k!k! ⋅i!(n−i)!n! ⋅(k−i)!(n−k)(n−i)!
∑i=0k(−1)i2k−i nCkkCi
=nCk[∑i=0k(−1)i2k−ikCi]=nCk
kC0⋅2k(−1)0+kC12k−1(−1)1+kC22k−2(−1)2+…[2+(−1)]k
nCr(nr)
Sk=3k(0100)(k100)−3k−1(1100)(k−199)+3k−2(2100)(k−298)−…+(−1)k(k100)(0100)
Vk=(1/2)kSk=M(100,k)
A) ∑k=0100SkS−100−k
B) M(100,49)+M(100,50)
Sk=3k100C0100Ck−3k−1100C199Ck−1+…(−1)k100Ck100−kC0
=∑i=0k3k−i⋅(−1)i⋅100Ci⋅100−iCk−i
k!k!⋅i!(100−i)!100!⋅(k−i)!(100−k)!(100−i)!
=∑i=0k3k−i(−1)i100Ck⋅kCi=100Ck⋅∑i=0k3k−i⋅(−1)ikCi
(3−1)(3−1)….(3−1)
(3−1)(3−1)….(3−1)→k
(3−1)(3−1)..→k−i
…(3−1)→i
100Ck⋅∑i=0k3k−i⋅(−1)ikCi→(3−1)k
Sk=100Ck⋅2k
S100−k=100C100−k⋅2100−k
∑k=0100SkS100−k=∑k=0100100Ck⋅100C100−k⋅2100
=2100∑k=0100100ck100C100−k
(x+1/x)200=(x+1/x)100(x+1/x)100
200C100=C0⋅c100+c1⋅c99+c2⋅c98+⋅⋅
=200C100⋅2100
M(100,k)=(21)kSk
=(1/2)k⋅100Ck⋅2k=100Ck
M(100,49)+M(100,50)=100C49+100C50
101C50=101C51
1+x,1+x+x2,1+x+x2+x3,….1+x+x2+…xn
(1+x)(1+x+x2)(1+x+x2+x3)(…)…(1+x+x2+…+xn)
=a0+a1x+a2x2+a3x3+…..aNxN
How many terms in the expansion?
Show that coeffs equi-distant are equal from beginning and end.
Sum of odd coeffs = Sum of even coeffs
=2(n+1)!
x1+2+3……n=x2n(n+1)
2n(n+1)+1
(1+x)(1+x+x2)(…)…(1+x+x2+x+…xn=a0+a1x+…aNxN
(1+x−1)(1+x−1+x−2)…(1+x−1+x−2+…x−n)=a0+a1x−1+…aNx−N
x−N(1+x)(1+x+x2)…(xn+xn−1+…+x2+x+1)=x−N(a0+a1x+…aNxN)
0=a0−a1+a2−a3+…⇒ Sum of odd terms
= Sum of even terms
2×3×4×…(n+1)=2× Sum of odd