${ }^{100} C_k \cdot \sum_{i=0}^k 3^{k-i} \cdot (-1)^i { }^k C_i \rightarrow (3-1)^k$
$S_k={ }^{100} C_k \cdot 2^k$
$S_{100-k}={ }^{100} C_{100-k} \cdot 2^{100-k}$
$\sum_{k=0}^{100} S_k S_{100-k}=\sum_{k=0}^{100}{ }^{100} C_k \cdot{ }^{100} C_{100-k} \cdot 2^{100}$
$=2^{100} \sum_{k=0}^{100}{ }^{100} c_k{ }^{100} C_{100-k}$
$(x+1 / x)^{200}=(x+1 / x)^{100}(x+1 / x)^{100}$
${ }^{200} C_{100}=C_0 \cdot c_{100}+c_1 \cdot c_{99}+c_2 \cdot c_{98}+\cdot \cdot$
$={ }^{200} C_{100} \cdot 2^{100}$