Find the sum of the roots of the equation:
$x^{2001}+\left(\frac{1}{2}-x\right)^{2001}=0$
Solution: $ P_1, P_2, P_3 \ldots P_{2000}$
$(\frac{1}{2} )\left(x-P_1\right)\left(x-P_2\right)\left(x-P_3\right) \cdots $
$\left(x-P_{2000}\right)=0$
$ x^{2001}+\left(\frac{1}{2}-x\right)^{2001} = \frac{1}{2}\left(x-p_1\right)\left(x-P_2\right) \cdots\left(x-P_{2000}\right)$
$ x^{2000}-x^{1900} \sum_{i=1}^{2000} P_i+\cdots$
$^{2001} C_2 x^{1999}$
$\sum P_i={ }^{2001} C_2=\frac{2001 \times 2000}{2}$