f(x)=1−x+x2−x3+⋯+x16−x17
=a0+a1(1+x)+a2(1+x)2+a3(1+x)3+…+a17(1+x)17
What is a2 ?
1=a0+a1+a2+…+a17
−x=a1x+2a2x+3a3x+⋯+17a17x
x2=a2x2+3c2a3x2+4c2a4x2+5c2a5x2+⋯⋅17c2a17x2
12!1!3!242!2!4!352!3!5!→46
f′=dxdf
=−1+2x−3x2+⋯+16x15−17x16
=a1+2a2(1+x)+3a3(1+x)2+4a4(1+x)3+…+17a17(1+x)16
f′′=dx2d2f
=2−6x+4×3x2−5×4x3
+⋯+16×15x14−17×16x15
=2a2+3a3×2(1+x)+4a4×3(1+x)2
+⋯+17a17×16(1+x)15
2a2=2×+3×2+4×3+5×4+6×5+⋯+17×16x=−1
2a2=2×+3×2+4×3+5×4+6×5+⋯+17×16
x=−1
=2+6+12+20+30+42+⋯+17×16
=∑n=217n(n−1)=∑n=217n2−∑n=217n
{∵(1+2+3+…+n)+(n+(n−1)+(n−3+…+1)=n(n+1)12+22+32+⋯+n2=6n(n+1)(2n+1)}
∴∑n=217n2−∑n=217n=(67×18×35−1)−(217×18−1)
=17×183×(632)=51×32
a2=51×16=816
(3+5)n=I+f where I is the largest integer and 0≤f<1
Solution: Suppose (3+5)n=ρ+σ
ρ = rational and σ = irrational
We need to show that
ρ=2I+2, σ=2I+2f−1
(3+5)n⟶3n+C23n−2⋅5+…Cn−13⋅52n
(3−5)n⟶C13n−15+C33n−3⋅5⋅15+…Cn⋅52n⋅5
(3+5)n=ρ+σ=I+f
(3−5)n=ρ−σ
(3+5)n=I+f
(3−5)n=(I2−1)+(1−f)
0<(3−5)n<1
(7+43)n=I+f
Show that
(1−f)(I+f)=1
Solution:
(7−43)n−=1−f
(1−f)(I+f)=(7−43)n(7+43)n
=[(7−43)(7+43)]n
=[49−48]n=1.
P=(2+3)5,f is the fractional part of P.
f=P−[P]
Find 1−ff2
Solution:
(2−3)5← fractional term =1−f
(2−3)5=1−f
f=1−(2−3)5
1−ff2=(2−3)5[1−(2−3)5]2
=[(2+3)(2−3)]5(2+3)5(1−(2−3)5)2
=(2+3)5−2(2+3)5(2−3)5+(2+3)5(2−3)10
1−ff2=[(2+3)5+(2−3)5]−2
=2×(25+23⋅10⋅3+2⋅5⋅9)−2
=2×(32+240+90)−2
=2×362−2=722.
Find the sum of the roots of the equation:
x2001+(21−x)2001=0
Solution: P1,P2,P3…P2000
(21)(x−P1)(x−P2)(x−P3)⋯
(x−P2000)=0
x2001+(21−x)2001=21(x−p1)(x−P2)⋯(x−P2000)
x2000−x1900∑i=12000Pi+⋯
2001C2x1999
∑Pi=2001C2=22001×2000