(x+y)n=xn+nC1 xn−1y+nC2 xn−2 y2+……yn
xn=T0 nC1=T1 nC2=T2 yn=Tn
(T0T1)=nC0nC1xy T1T2=nC1nC2xyTrTr+1<1
Find the numerically greatest term in (2+3x)9,x=3/2
Solution: nC0 29+nC1 28.3x+nC2.27.(3x)2+…..nCn(3x)9
TrTr+1=9Cr9Cr+1⋅23x
=(r+1)!(8−r)!9!⋅9!r!(9−r)!⋅23x
=(r+19−r).23x<1
[∵x=23]
=(r+19−r).49<1
What is r s.t. r+19−r⋅49<1
81−9r<4r+4
77<13r
r>77/13
r=6,7,8,9
73⋅49=2827
(3−5x)15x=1/5
TrTr+1=15Cr15Cr+1:3(−5x)
=−r+115−r⋅3(−5x)
r+115−r. 53x<1 [Put x = 1/5]
r+115−r. 31<1
15−r<3r+3
$ 12<4 r \Rightarrow 3
r=3→ r+1r−15.31
Find the term independent of x in:
(1+x+2x3)(23x2−3x1)9
Solution x0,x1,x31
nCr⋅(23x2)9−r(3x1)r
x18−2r−r=x18−3r
x0⇒r=6
x−3⇒r=7
9C6⋅(23x2)3(−3x1)6+2x3 9C7⋅(23x2)2(−3x1)7
=3×29×8×7⋅827⋅x6⋅27×27⋅x61−2×29×8x3⋅49x4⋅27×27×3×x71
=187−272
=5421−4=5417
f(x)=1−x+x2−x3+….+x16−x17
=a0+a1(1+x)+a2(1+x)2+a3(1+x)3+…+a17(1+x)17
What is a2?
Solution:
1=a0+a1+a2+…..+a17
−x=a1x+2a2x+3a3x+…..+17a17x
x2=a2x2+3c2a3x2+4c2a4x2+5c2a5x2+….17c2a17x2
∣2!1!3!242!2!4!352!3!5!→46
1=a0+a1+a2+…..+a17
−x=(a1+2a2+3a3+…..+17a17)x
x2=(a2+3a3+3×24a4+3×24×35a5+….+3×24×35×….1517a17)x2
dxdf=−1+2x−3x2+⋯+16x15−17x16
=a1+2a2(1+x)+3a3(1+x)2+4a4(1+x)3+…+17a17(1+x)16
f’’=dx2d2f=2−6x+4×3x2−5×4x3+⋯+16×15x14−17×16x15
=2a2+3a3×2(1+x)+4a4×3(1+x)2+⋯+17a17×16(1+x)1
1=a0+a1+a2+…+a17
−x=(a1+2a2+3a3+….+17a17)x
x2=(a2+3a3+3×24a4+3×24×35a5+…+3×24×35×…1517a17)x2
2=2a2+3×2a3+4×3a4+5×4a5+⋯+17×16a17
−1=a1+2a2+3a3+4a4+5a5+⋯+17a17
1=a0+a1+a2+⋯+a17