Find the numerically greatest term in $(2+3 x)^9, x=3 / 2$
Solution: ${ }^nC_0 ~2^9+{ }^nC_1 ~2^8 . 3 x+{ }^nC_2 . 2^7 .(3 x)^2+….. {^nC_n}(3 x)^9$
$\frac{T_{r+1}}{T_r}=\frac{{ }^9 C_{r+1}}{{ }^9 C_r} \cdot \frac{3 x}{2}$
$=\frac{9 !}{(r+1) !(8-r) !} \cdot \frac{r !(9-r) !}{9 !} \cdot \frac{3 x}{2}$
$
=\left(\frac{9-r}{r+1}\right) . \frac{3x}{2}<1
$
[$\because x = \frac{3}{2}$]
$
=\left(\frac{9-r}{r+1}\right) . \frac{9}{4}<1
$
What is $r$ s.t. $\frac{9-r}{r+1} \cdot \frac{9}{4}<1$
======