(x+y)n=nc0xn+nC1xn−1y+nC2xn−2y2+nC3xn−3y3+⋯+nCn−1xyn−1+nCnyn
[nCr=r!(n−r)!n!]
In (a−b)n (n⩾5), the sum of 5th and 6th terms is 0. Then find the value of ba.
Solution:
(a−b)n=nC0an−nC1an−1b++5th termnC4an−4b4−6th termnC5an−5b5
Now, according to the question,
nC4an−4b4=nC5an−5b5
4!n−4!n!a=5!n−5!n!b
a/b=5n−4
(1+x+x2)n=a0+a1x+a2x2+⋯a2nx2n
1) a0+a1+a2+…+a2n= ?
2) a0−a1+a2−a3+a4−…+a2n= ?
3) a02−a12+a22−a32+⋯+a2n2= ?
Solution:
1) a0+a1+a2+…+a2n=3n
2) a0−a1+a2−a3+a4−…+a2n=1
3) (1+x+x2)n(1−x1+x21)n
a0+a1x+a2x2+⋯+a2nx2n
a0−xa1+x2a2−+a2n/x2n
term independent of x is a02−a12+a22−a32+⋯⋅.
(1+x+x2)n×(1−x1+x21)n
=[(1+x+x2)(1−x1+x21)]n
=[1−x1+x21+x−1+x1+x2−x+1]n
=[x21+1+x2]n
=x2n1(1+x2+x4)n
=x2n1(a0+a1x2+a2x4+⋯anx2n⋯a2nx4n)
⇒ term independent of x is an.
(1+x)14 if the rth ,r+1th ,r+2th terms are in Arithmetic Progression (AP). r= ?
Solution:
r th →14−r+1 →14cr−1⋅xr−1
r+1 th →14Crxr
r+2 th →14cr+1xr+1
(r−1)!(15−r)!14!⋅xr−1+(r+1)!(13−r)!14!⋅xr+1=2(4−r)!r!14!xr
(14−r)(15−r)1+r(r+1)x2=r(14−r)2x
(1+x)n=0!n!n!+1!(n−1)!n!x+2!(n−2)!n!x2+⋯
(1+x)n=1+nx+2n(n−1)x2+3!n(n−1)(n−2)x3+
4!n(n−1)(n−2)(n−3)+⋯⋅ ∣x∣<1
limx→0(xex−1)=1
limx→0ex−1=limx→01+x
e=limx→0(1+x)1/x
=2⋅7182818…
=limy→∞(1+1/y)y
ex=limy→∞(1+1/y)xy
=limy→∞[1+xy+2!xy(xy−1)⋅y21+3!y3xy(xy−1)(xy−2)+…]
ex=limy→∞[1+x+2!x2+3!x3+4!x4+⋯]
e−x=[1−x+2!x2−3!x3+4!x4+⋯⋅]
e=1+1+2!1+3!1+4!1+⋯
Prove that C1+2C2+3C3+⋯+nCn=n⋅2n−1
Solution:
C0+c1+C2+C3+⋯Cn=2n
dxdxn=nxn−1
(1+x)n=C0+C1x+C2x2+⋯⋅Cnx
n(1+x)n−1=C1+2C2x+3C3x2+⋯+nCnxn−1
Plug inx=1
⇒n⋅2n−1=C1+2C2+3C3+…+nCn
C0+2C1+3C2+⋯+(n+1)Cn=(n+2)2n−1
Solution:
L.H.S =(C0+C1+C2+⋯Cn)+(C1+2C2+3C3+⋯+nCn)=2n+n⋅2n−1
=(n+2)2n−1
Other Way to prove,
C0+2C1+3c2+⋯+(n+1)Cn=k
(n+1)Cn+nCn−1+(n−1)Cn−2+…+C0=k
(n+2)C0+(n+2)C1+(n+2)C2+⋯(n+2)Cn=2k
k=2n+2(C0+C1+C2+…+Cn)=2n+2⋅2n