$ (x+y)^n={ }^n C_0 x^n+{ }^n C_1 x^{n-1} y+\cdots \cdot{ }^n C_n y^n $
1. $ { }^n C_0+{ }^n C_1+{ }^n C_2+\cdots \cdot{ }^n C_n=?(1+1)^n=2^n $
Let $x= 1, \ \ y = 1 $ then,
$ { }^n C_0+{ }^n C_1+{ }^n C_2+\cdots \cdot{ }^n C_n=(1+1)^n=2^n $
2. Let $x= 1, \ \ y = -1 $ then,
$ { }^n C_0+{ }^n C_1(-1)+{ }^n C_2(-1)^2+\cdots \cdot{ }^n C_n(-1)^n=(1-1)^n=0 $
$ 0 ={ }^n C_0-{ }^n C_1+{ }^n C_2-{ }^n C_3+{ }^n C_4 \ldots(-1)^n{ }^n C_n $
Now, there are two cases:
$n$ is even and $n$ is odd.
$\begin{aligned} & (1-1)^{2 n}={ }^{2 n} C_0-{ }^{2 n} C_1+{ }^{2 n} C_2 \cdots \cdot+{ }^{2 n} C_{2 n} \\ & { }^{2 n} C_0+{ }^{2 n} C_2+{ }^{2 n} C_4+\cdots{ }^{2 n} C_{2 n}={ }^{2 n} C_1+{ }^{2 n} C_3+{ }^{2 n} C_5+\cdots{ }^{2 n} C_{2 n} \\ & C_0+{C_1}+{C_2}+\cdots \cdot C_{2 n}=2^{(2 n)} \\ & C_0+C_2+C_4+\ldots C_{2 n}=C_1+C_3+C_5+\cdots C_{2 n-1}=2^{2 n-1}\end{aligned}$