For two positive integers m,n, if in the expansion of (1+x)m(1−x)n the coefficients of x and x2 are 3 and -6 respectively, then what is the value of m ?
(1) 6
(2) 9
(3) 12
(4) 24
(1+x)m(1−x)n=k=0∑m.mCk.xkk=0∑n.nCr(−1)k..xk
coefficient of x →mC0(−nC1)+mC1.nC0
-n+m=3
co-efficient of x2→mC0.nC2+mC1.(−nC1)+mC2.nC0
2n(n−1)−mn+2m(m−1)=−6
n2−n+m2−m−2mn=−12
⇒(m−n)2−(m+n)=−12
9-(m+n)=-12
⇒ m+n=21
m - n = 3
∴2m=24
⇒ m = 12
The coefficient of t24 in the expansion of (1+t2)12(1+t12)(1+t24) is
(1) 12C6
(2) 12C6+1
(3) 12C6+2
(4) 12C6+3
(1+t2)12.(1+t12).(1+t24)
=k=0∑12.12Ck.t24−2k(1+t12)(1+t24)
=k=0∑12.12Ck(t24−2k+t36−2k+t48−2k+t60−2k)
12C0+12C6+12C12
=1+12C6+1=2+12C6
The coefficient of x11 in the expansion (1+x2)4(1+x3)7(1+X4)12 is
(1) 1051
(2) 1106
(3) 1113
(4) 1120
(1+x2)4=k=0∑44Ck.x2k , A = {0,2,4,6,8}
(1+x3)7=r=0∑77Cr.x3r , B = {0,3,6,9}
(1+x4)12=s=0∑1212Cs.x4s , C = {0,4,8}
A | B | C | |
---|---|---|---|
11 = | 0 + | 3 + | 8 |
11 = | 2 + | 9 + | 0 |
11 = | 4 + | 3 + | 4 |
11 = | 8 + | 3 + | 0 |
Coefficient of x11 in the expansion is
4C07C112C2+4C17C312C0+4C27C112C1+4C47C112C0=462+140+504+7=1113
If for some integers n,r such that $0 \leq r
( 1)(−∞,−2]
(2) [2,∞)
(3) [−3,3]
(4) (3,2]
n−1Cr=(k2−3)nCr+1
⇒r!(n−1−r)!(n−1)!=(k2−3)(r+1)!(n−k−1)!n!
⇒nk+1=k2−3,n1≤nk+1≤1
0<n1≤k2−3≤1
k2≤4,k2≥n1+3,k2>3
k2≤4→−2≤k≤2
k2>3→k2>3ork<−3
[−2,−3]∪[3,2]
The remainder of 82020−622021 when divided by 9 is
(1) 2
(2) 7
(3) 8
(4) 0
8=9−1
62=63−1[63=7×9]
= 82020−622021
= (9−1)2020−(63−1)2021
= k=0∑20202020Ck.92020−k(−)k−k=0∑2021.2021Cr.632021−r(−1)r
= 2020C2020−2021C2021(−1)
= 2
For a,b=0, the sum of the 5th and the 6th terms in the expansion of (a−b)n is zero for an integer n≥5. Then the ratio a/b is.
(1) 6n−5
(2) 5n−4
(3) n−45
(4) n−56
(a−b)n=k=0∑nnCkan−k(−1)kbkT5=nC4an−4b4T6=−nC5an−5b5
nC4an−4b4−nC5an−5b5=0
⇒nC4an−5b4a−5(n−4)b=0
As a,b=0,
a−5(n−4)b=0
⇒ba=5n−4
For a positive integer n, the coefficients of three consecutive terms in the expansion of (1+x)n+5 are having ratio 5:10:14. Then what is the value of n ?
(1+x)n+5=∑t=0n+5n+5Ctxt
$ { }^{n+5} C_{r-1},{ }^{n+5} C_r,{ }^{n+5} C_{r+1} \text { for some } 0
[n+5Cr−1=5k], [n+5Cr=10k], [n+5Cr+1=14k]
for some k
(r−1)!(n+6−r)!(n+5)!=5k
r!(n+5−r)!(n+5)!=10k
(r+1)!(n+4−r)!(n+5)!=14k
n−r+6r=105⇒2r=n−r+6⇒3r−n=6n−r+5r+1=1410⇒7r+7=5n−5r+25⇒12r−5n=18
12r−4n=24
12r−5n=18
n=6
Let m be the smallest positive integer such that the coefficient of x2 in the sum(1+x)2+(1+x)3+⋯+(1+x)49+(1+mx)50 is 51C3(3n+1). Then what is the value of n ?
Solution:
(1+x)2+(1+x)3+⋯+(1+x)49
=(1+x)2{1+(1+x)+⋯+(1+x)47}
=(1+x)2x(1+x)48−1
=x(1+x)50−(1+x)2
x(1+x)50−(1+x)2+(1+mx)50
co-efficient of x2 in the given sum =50C3+m250C2
50C3+m250C2=51C3(3n+1)
⇒(3n+1)=51C350C3+m251C350C2
3n+1=5148+m2513⇒153n+51=48+3m2⇒3m2−3=153nm2−1=51nm=1,n=0
For integers m,n with n≥m, show that
nCm+n−1Cm+n−2Cm+⋯+mCm=n+1Cm+1.
Hence prove that
nCm+2n−1Cm+3n−2Cm+⋯+(n−m+1)mCm=n+2Cm+2
mCm+m+1Cm+m+2Cm+⋯+n−1Cm+nCm
[mCm+m+1Cm=m+1Cm+1]
=m+2Cm+1+m+2Cm+…+n−1Cm+nCm
[m+2Cm+1+m+2Cm=m+3Cm+1]
n−1Cm+1n−1Cm+nCm
=nCm+1+nCm
=n+1Cm+1
nCm+2n−1Cm+3n−2Cm+⋯+(n−m+1)mCm=(nCm+n−1Cm+n−2Cm+⋯+mCm)+(n−1Cm+n−2Cm+⋯+mCm)+⋯+(m+1Cm+mCm)+mCm=n+1Cm+1+nCm+1+⋯+m+2Cm+1+m+1Cm+1=n+2Cm+2.
Statement 1:∑r=0n(r+1)nCr=(n+2)2n−1.
Statement 2 : ∑r=0n(r+1)nCrxr=(1+x)n+nx(1+x)n−1.
Put x=1 in statement 2
LHS =∑r=0n(r+1)nCr
RHS =2n+n2n−1=2n−1(2+n)
(1+x)n=∑r=0nnCrxr
x(1+x)n=∑r=0nnCrxr+1
(1+x)n+nx(1+x)n−1
=∑r=0n(r+1)nCrxr
statement 2 is true.
Let S1=∑j=110j(j−1)10Cj,S2=∑j=110j10Cj and S3=∑j=110j210Cj
Statement 1 : S3=55×29
Statement 2 : S1=90×28 and S2=10×28.
S1+S2=S3
(1+x)10=∑j=01010Cjxj10(1+x)9=∑j=01010Cjjxj−1
Put x=1
LHS =10⋅29
RHS =∑j=110j10Cj=S2S2=10⋅29
10⋅9(1+x)8=∑j=010j(j−1)10Cjxj−2
Put x=1
LHS =90⋅28=29⋅45
RHS=∑j=210j(j−1)10Cj=S1
S1=29⋅45
S3=S1+S2=29⋅45+29⋅10=29⋅55