(a+b)0=1
(a+b)1=1⋅a+1⋅b
(a+b)2=1⋅a2+2ab+1⋅b2
(a+b)3=1⋅a3+3a2b+3ab2+b3
(a+b)7=(a+b)⋅(a+b)⋅(a+b)⋅(a+b)⋅(a+b)⋅(a+b)⋅(a+b)
=a7+7a6b+7C2a5b2+7C3a4b3+7C4a3b4+7C5a2b5+7C6ab6+b7
[7C2=2!⋅5!7!=21]
(a+b)n=nC0an+nC1an−1b+nC2an−2b2
+nC3an−3b3+⋯⋅nCn−1abn−1+nCnbn
=∑k=0nnCkan−kbk
Example (a−b)7
(a−b)7=a7−7a6b+21a5b2−35a4b3+35a3b4−21a2b5+7ab6−b7
6 % p.a.P→1.06P→1.06×1.06P
(1.06)20P
Solution: (1+0.06)20=1+20×0.06+20C20.062+20C30.063+20C40.064+…
[20C2=220×19=190
20C3=2×320×19×18=190×6=1140
20C4=20C3×417
20C5=20C4×516]
1+1.2+190×0.06×0.06+190×6×0.06×0.06×0.06+1140×417×(0.06)4+….
=1+1.2+190×0.0036+190×6×0.000216+1140×417×(0.06)4+….
≈1+1.2+0.7+0.22+0.02+….
1. Which is greater? (1.01)1000 or 11
Solution:
1+1000×0.01+1000C2×0.012+1000C3×0.013+⋯
1+10+1000C2×0.012+1000C3×0.013+⋯
2. Evaluate (1−2x)5.
Solution: (1−2x)5=1−5×2x+10×4x2−10×8x3
+5×(2x)4−(2x)5
=1−10x+40x2−80x3+80x4−32x5
3. Evaluate (x+x1)6.
Solution:
(x+x1)6=x6+6x4+15x2+20+x215
+x46+x61
4. Evaluate (x2−2x)5
(x2−2x)5=(x2)5−5(x2)3+10(x2)−10(2x)
+5(2x)3−(2x)5