For n∈N,
(a+b)n=nC0an+nC1an−1b+⋯+nCn−1abn−1+nCnbn
=∑k=0nnCkan−kbk
(a−b)n=∑k=0nnCk(−1)kan−kbk
1) For n∈N, 0 ⩽ r < n, we have
nCr+nCr−1=n+1Cr
2) (a+b)n+(a−b)n=2∑k=0 k even nnCkan−kbk
3) (a+b)n−(a−b)n=2∑k=0 k odd nnCkan−kbk
For m,n∈N,k⩾0
∑r=0knCrmCk−r is the coefficient of xk in (1+x)n(1+x)m.
Which one among 10150 and 9950+10050 is bigger?
Solution:
10150=(100+1)50
9950=(100−1)50
10150−9950=(100+1)50−(100−1)50
=∑k=05050Ck(100)50−k−∑k=05050Ck(100)(−1)
=2∑k=05050Ck(100)50−k (k odd)
2(50C110049+50C310047+….+50C49100)
50 {∵50C1=50}
=10050+250C310047+⋯+250C49100
10150−9950>10050
⇒10150>10050+9950
If for a positive integer n, the coefficients of 2nd,3rd and 4th term in the expansion of (1+x)n are in arithmetic progression, then what is n ?
Solution:
(1+x)n=
nC0+nC1x+nC2x2+nC3x3+⋯+nCnxn
2nd term ⟶nC1=(n)
3rd term ⟶nC2=(2n(n−1))
4th term →nC3=(6n(n−1)(n−2)
2n+6n(n−1)(n−2)=2n(n−1)
6+(n−1)(n−2)=6n−6
⇒6+n2−n−2n+2=6n−6
⇒n2−9n+14=0
n=29±81−56=29±5
n=Not possible2 or 7
{(1+x)n there are total n+1 terms If n=2, we get 3 terms}
What is the sum of all the rational numbers in the expansion of (2+31/5)10?
Solution: (2+31/5)10
10C0(2)10(351)0+10C1(2)9(351)1
+….+10C10(2)0(351)10 (1.1.9=9)
1.32.1=32
39+9=41
The expression (x+x3−1)5+(x−x3−1)5 is a polynomial of degree
(1)5 (2)6 (3)7 (4)8
Solution:
(x+x3−1)5=∑k=055Ckx5−k(x3−1)k
(x−x3−1)5=∑k=055Ckx5−k(−1)k(x3−1)k
(x+x3−1)5+(x−x3−1)5=2∑k=05Ckx5−k(x3−1)k/2 k even
[k=0x51 degree 5]
[k=2x3(x3−1) degree 6]
[k=4x(x3−1)2 degree 7]
The term independent of x in the expansion of (x2/3−x1/3+1x+1−x−x1/2x−1)10 is
(1)4
(2)120
(3)210
(4)310
x2/3−x1/3+1x+1=x2/3−x1/3+1(x1/3)3+1=(x2/3−x1/3+1)(x1/3+1)(x2/3−x1/3+1)
x−x1/2x−1=x1/2(x1/2−1)(x1/2)2−1=x1/2(x1/2−1)(x1/2+1)(x1/2−1)=x1/2x1/2+1
=1+x−1/2
∴(x2/3−x1/3+1x+1−x−x1/2x−1)10=(x1/3+1−1−x−1/2)10
=(x1/3−x−1/2)10
=∑k=01010Ck(x1/3)10−k(−1)kx−k/2
=∑k=010(−1)k10Ckx(20−5k)/6
310−k−2k
=620−2k−3k
=620−5k
620−5k=0
⇒k=4
(−1)4 10C4
=1⋅2410⋅9⋅8⋅7=210
The value of the sum 50C4+∑r=1656−rC3 is
(1)55C4
(1)55C3
(1)56C3
(1)56C4
n∈N, 0⩽r<n,
We have,
nCr+nCr−1=n+1Cr
50C4+50C3+51C3+52C3+53C3+54C3+55C3
=51C4+51C3+52C3+53C3+54C3+55C3
=52C4+52C3+53C3+54C3+55C3
=53C4+53C3+54C3+55C3
=54C4+54C3+55C3
=55C4+55C3
=56C4
The value of (21C1−10C1)+(21C2−10C2)+⋯+(21C10−10C10) is
(1) 220−210
(2) 221−211
(3) 221−210
(4) 220−29
Solution:
(21C1+21C2+⋯+21C10)−210−1(10C1+10C2+⋯+10C10)
∑k=01010Ck(1)10−k(1)k−10C0=(1+1)10−1=210−1
21C1+21C2+⋯+21C10
=21(221C1+221C2+⋯+221C10)
=21(21C1+21C2+⋯+21C20)
21C0+21C21−21C0+21C21)
21C1=21C20
21C2=21C19
.
.
.
21C10=21C11
(1+1)21=21(221−1−1)=220−1
The value of 20C0−20C1+20C2−⋯+20C10 is
(1) 0
(2) 20C10
(3) −20C10
(4) 220C10
Y=20C0−20C1+20C2−⋯+20C10
(1−x)20=20C0−20C1x+20C2x2−⋯
+20C10x10−20C11x11+⋯+20C20x20
Put x=1
0=Y−20C11+20C12−⋯+20C20
Y=20C9−20C8+20C7−⋯−20C0+20C10−20C10
= −(20C10−20C9+20C8−⋯+20C0)+20C10
2Y=20C10
Y=2120C10
The value of the sum 30C030C10−30C130C11+30C230C12−⋯+30C2030C30 is
(1) 30C10
(2) 30C15
(3) 60C30
(4) 31C10
30C030C20−30C130C19+30C230C18−⋯+30C2030C0
co-efficient of x20 in (1+x)30(1−x)30
(1+x)30(1−x)30
=(1−x2)30
=∑k=03030Ck(−1)kx2k
co-efficient of x20=30C10(−1)10 =30C10
The sum of the coefficients of the integral powers of x in the binomial expansion of (1−2x)50 is
(1) 2350−1
(2) 2350+1
(3) 2250+1
(4) 2350
(1−2x)50=∑k=05050Ck(−1)k2kxk/2
50C0+50C222+50C424+⋯+50C50250
(1+2x)50+(1−2x)50
=∑k=05050Ck2kxk+∑k=05050Ck(−1)k2kxk
=2∑k=05050Ck2kxk k=even
Putting x=1,
50C0+50C222+50C424+⋯+50C50250
=21{350+(−1)50}
=2350+1