2.Find the number of divisors of
(i) 12600
(ii) 31752
(iii) 55125
Solution: (i) $12600=2^3 \times 3^2 \times 5^2 \times 7^1$
So any divisor is of the form, $x=2^a \quad 3^b \quad 5^c \quad 7^d$, where
$a \in \{0,1,2,3\}, b \in \{0,1,2\}, c \in \{0,1,2\}, d \in \{0,1\}.$
So mapping f defined by
$f(x)=(a, b, c, d)$ is a bijection from $A=$ the set of divisors of 12600 to
$B=\{(a, b, c, d): 0 \leq a \leq 3,\quad \ 0 \leq b \leq 2,\quad \ 0 \leq c \leq 2, \quad \ 0 \leq d \leq 1 \}$