JEE (2014) Let $n_1<n_2<n_3<n_4<n_5$ be positive integers such that $n_1+n_2+n_3+n_4+n_5=20$. In how many ways $\left(n_1, n_2, n_3, n_4, n_5\right)$ can be choosen.
Solution: $1,2,3,4,10; \quad 1,2,3,5,9 ;\quad 1,2,3,6,8$
$$1,2,4,5,8 ; \quad 1,2,4,6,7 ;\quad 1,3,4,5,7;$$
$2,3,4,5,6$.
Total number of ways $=7$.