Solve the system
a+b=8
a+c=13
b+d=8
c−d=5
Solution 110010100101001−1abcd=81385
110010100101001−181385
R2→R2−R110001−1100101001−18585R2→−R2100011100−101001−18−585R1→R1−R2R3→R3−R2100001001−111001−113−5135
R1→R1−R3R2→R2+R3R4→R4−R3100001000010−111−20813−8R4→2−1R4100001000010−111108134R1→R1+R4R2→R2−R4R3→R3−R410000100001000014494
a=4,b=4,c=9,d=4
Solve the system
x−3y+2z=02x−5y−2z=04x−11y+2z=0
Solution
124−3−5−112−22R2→R2−2R1R3⟶R3−4R1100−3112−6−6
R1→R1+3R2R3⟶R3−R2100010−16−60
z - independent Variable Let z=λ
x−16z=0⇒x=16λy−6z=0⇒y=6λ(16λ,6λ,λ),λ∈R.
Solve the system
t−u+2v−3w=94t+11v−10w=463t−u+8v−6w=27
143−10−12114−3−10−694627R2→R2−4R1,R3→R3−3R1100−142232−3239100
R2→41R2100−11223/42−31/2395/20
R1→R1+R2R3→R3−2R210001011/43/41/2−5/21/2223/25/2−5
R3→2R310001011/43/41−5/21/2423/25/2−10R1→R1−411R3;R2→R2−43R3100010001−25−1121−34223+25525−215−10100010001−27/2−5/2439−5−10
w - idependent variable. Let w=λ.
t−227w=39⇒t=227λ+39u−25w=−5⇒u=25λ−5v+4w=−10⇒v=−4λ−10(227λ+39,25λ−5,−4λ−10,λ).
Solve the system
x+2y+3z=12x+y+3z=25x+5y+9z=4.
$
\begin{aligned}
& \text { Solution. }\left[\begin{array}{lll|c}
1 & 2 & 3 & 1 \\
2 & 1 & 3 & 2 \\
5 & 5 & 9 & 4
\end{array}\right] \\
& R_2 \rightarrow R_2-2 R_1 ; R_3 \rightarrow R_3-5 R_1\left[\begin{array}{ccc|c}
1 & 2 & 3 & 1 \\
0 & -3 & -3 & 0 \\
0 & -5 & -6 & -1
\end{array}\right]
\end{aligned}
$
R2→3−1R210021−531−610−1R1→R1−2R2R3→R3+5R210001011−110−1R3→−R3100010111101R1→R1−R3R2→R2−R31000100010−11
x=0,y=−1,z=1.
x+iy−ix+zy−z=0=0=0
Solution 1−i0i0101−1 R2→R2+iR1100i−1101−1
R2→−R2100i110−1−1R1→R1−iR2;R3→R3−R2100010i−10
z - independent variable.
z=λ.x+iz=0⇒x=−iλy−z=0⇒y=λ.(−iλ,λ,λ),λ∈1R.
Determine the values of λ & μ for which the system of equation
x+2y+3z=6x+3y+5z=92x+5y+λz=μ has
i) no solution
ii) unique solution &
iii) infinite number of solutions.
Solution 11223535λ69μ
(2λ−16)z=2μ−30 (or) (λ−8)z=μ−15.
If the system
x+ayaz+yax+z=0=0=0
has infinite number of solutions, then find the value of a.
Solution 10aa100a1
If a=0, then the system has a unique solution. Let us assume that a=0.
R3→R3−aR1100a1−a20a1
R1→R1−aR2R3⟶R3+a2R2100010−a2a1+a31+a3=0⇒a3=−1 i.e., a=−1.
If a=−1, the coefficient matrix has got rank 2 .
∴ The system has infinite number of solutions if a=−1.
A square matrix A is said to be orthogonal if AAT=I.
If A=0αα2ββ−βγ−γγ is an orthoganal matrix then find the values of α,β & γ.
Solution
AA⊤=I0αα2ββ−βγ−γγ02βγαβ−γα−βγ=100010001
4β2+γ22β2−γ2−2β2+γ22β2−γ2α2+β2+γ2α2−β2−γ2−2β2+γ2α2−β2−γ2α2+β2+γ2=100010001
4β2+γ2=12β2−γ2=0α2+β2+γ2=1α2−β2−γ2=00011421−11−11−11010
R1⟷R3,R2⟷R411001−1421−11−11010R2→R2−R110001−2421−21−11−110R2→−21R210001142111−111/210
R1→R1−R2R3→R3−4R2R4→R4−2R21000010001−3−31/21/2−1−1R3→−31R310000100011−31/21/21/3−1R2→R2−R3R4→R4+3R31000010000101/21/61/30
α2=1/2,α=±1/2β2=1/6,γ2=1/3β=±1/6γ=±1/3