$R_1 \rightarrow R_1-\frac{5}{8} R_2, \ $ $\ R_3 \rightarrow R_3-\frac{1}{4} R_2 $
$\left[\begin{array}{ccc|c} 1 & 0 & 16 / 8 & 40 / 8 \\ 0 & 1 & -1 & -2 \\ 0 & 0 & 10 / 4 & 20 / 4\end{array}\right] $
$ R_3 \rightarrow \frac{4}{10} R_3$
$\left[\begin{array}{ccc|c} 1 & 0 & 16 / 8 & 40 / 8 \\ 0 & 1 & -1 & -2 \\ 0 & 0 & 1 & 2\end{array}\right] $
$R_2 \rightarrow R_2+R_3, \ \ $ $\ R_1 \rightarrow R_1-\frac{16}{8} R_3$
$\left[\begin{array}{ccc|c} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 \end{array}\right]$
$(1,0,2)$ is the solution.