Now $5 x_1, \quad \text{taken value} \quad \{0,5,10, \cdots\}$
$ 4 x_2 \quad \text{taken value} \quad \{0,4,8,12 \cdots\}$
$ 3 x_3 \quad \text{taken value} \quad \{0,3,6, \cdots\}$
$ 2 x_4 \quad \text{taken value} \quad \{0,2,4,6, \cdots\}$
$ x_5 \quad \text{taken value} \quad \{0,1,2,3 \ldots\}$
$ \therefore$ The power series for us in
$ \left(1+x^5+x^{10} \cdots\right) \times\left(1+x^4+x^8+\cdots\right.) \times \left(1+x^3+x^6+\cdots\right) \times$
$ \left(1+x^2+x^4+\cdots\right) \times \left(1+x+x^2+x^3-\cdots\right)$
We need to compute the coeff. of $x^5$.