Let $E$ be the event of selecting bag $A$.
$B$ be the event of getting $1W+1R$.
We want to compute $P(E \mid B)$
Using Bayers’ Theorem: $P(E \mid B)=\frac{P(B \mid E) \cdot P(E)}{P(B)}$
Now $P(E)=\frac{1}{3}$ and $P(B \mid E)=\frac{3}{{}^6{c_2}}=\frac{3}{\frac{6!}{2!4!}}$
$=\frac{3}{\frac{5 \times 6}{2}}=\frac{1}{5} .$
Similary ,$P(1W+1 R \mid Bag B)^2=\frac{2}{{}^4c_2}=\frac{2}{\frac{4 !}{2 ! 2 !}}=\frac{2}{6}=\frac{1}{3} $
$P(1W+1 R \mid Bag C)=\frac{12}{12 c_2}=\frac{12}{\frac{11\times12}{2}}=\frac{2}{11}$