Let T be a triangle with vertices a,b,c in C (in anticlockwise direction)
Then the following are Equivalent
(i) T is equilateral triangle
(ii) a+wb+w2c=0, w=c is 32π
(iii) a2+b2+c2=ab+bc+ca
Let T be a triangle with vertices z1,z4,z3 in C
If ∣z1∣=∣z2∣=∣z3∣ and z1+z2+z3=0. then show that T is equilateral triangle
Given z1+z2+z3=0
⇒z1+z2+z3=0
⇒zˉ1+zˉ2+zˉ3=0
divide by ∣z1∣2, we get
z1zˉ1zˉ1+z2zˉ2zˉ2+z3zˉ3zˉ3=0
⇒z11+z21+z31=0→×z1z2z3⇒z2z3+z1z3+z1z2=0→ (1)
we have (z1+z2+z3)2=0
⇒z12+z22+z34+2(z1z2+z2z3+z3z1)=0⇒z12+z22+z32=0→ (2)
From (1)& (2)
z12+z22+z32=z1z2+z2z3+z3z1
⇒ T is equilateral triangle.
Then show that for all integer n≥2
∣z1n+z2n+z3n∣∈{0,1,2,3}
observation, z12,z22,z32 are distinct
z12=z22⇒z32=−2z12⇒∣z3∣2=2⇒⇐
T(z12,z22,z32) is an equilateral triangle
i.e. z22=ωz12=ω4z12
⇒z2=±ω2z1
z32=ω2z12
⇒z3=±wz1
∣z1n+z2n+z3n∣=z1n(1±ω2n±ωn)
=1±ω2n±ωn⩽3
ω2n=ωn⇔ωn=1
1 ω ω2
1 ω −ω2
1 −ω ω2
1 −ω −ω2
Sum ∈{0,1,2,3}.
Compute
(1−w+w2)(1−w2+w4)⋯(1−wn+w2n)
Recall: 1+w+w2=0
ωn=⎩⎨⎧1 if n≡0(mod3)ω if n≡1(mod3)ω2 if n≥2(mod3)
1−w+w2=−w−w =−2w
1−ω2+ω4=1−ω2+ω=−2ω2
1−ω3+w6=11−wn+w2n=⎩⎨⎧1 if n≡0(mod3)−2ω if n≡1(mod3)−2ω2 if n≡2(mod3)
The 1st three term product =(−2ω)(−2ω2)⋅1=22
(1−ω+ω2)(1−ω2+ω4)⋯(1−ωn+ω2n)=⎩⎨⎧(22)3n if n≡0(mod3)(22)[3n]⋅(−2ω) if n≡1(mod3)(22)[3n](−2ω)(−2ω2) if n≡2(mod3)
Equation of a line in the complex plane is αˉzˉ+αz+β=0
where 0=α∈C,β∈R, and z=x+iy∈C.
Proof: Ax+By+C = 0
where, A,B,C ∈R & A2+B2=0
Let z=x+iy
x=2z+zˉy=2iz−zˉ⇒A(2z+zˉ)+B(2iz−zˉ)+C=0⇒zˉ(2A+iB)+z(2A−iB)+C=0
put α=2A−iB
αˉzˉ+αz+c=0→{1}
∵A2+B2=0,∣α∣=0,α=0⇒0=α∈C,c∈R
slope of Ax+By+C=0:m=−BAB=0
slope of (1) will be
A=α+αˉB=αˉ−αm=iα−αˉ(α+αˉ)
Consider the lines d1 and d2 with equations αˉ1zˉ+α1z+β1=0 and αˉ2zˉ+α2z+β2=0 respectively. Then show that the lines d1 and d2 are:
(i) parallel iff α1αˉ1=α2αˉ2
(ii) Perpendicular iff α2α1+α2α2=0
∣z∣=1z=1⋅cisθ, 0⩽θ<2π→∣z∣=rz=rcisθ,0≤θ<2π
→ circle with center as origin : radius =r
General equation of a circle:
z−z0=rcisθ,0⩽θ<2π∣z−z0∣=r
(∗)←∣z−z0∣2=r2z0=x0+iy0,z=x+iy(x−x0)2+(y−y0)2=r2
(∗)→(z−z0)(zˉ−zˉ0)=r2zzˉ−zzˉ0−zˉz0+∣z0∣2−r2=0zzˉ−zzˉ0−zˉz0+c=0→(I)
(I) describes a circle if c=∣z0∣2−r2
⇒r2=∣z0∣2−c>0
i.e, c<∣z0∣2
Prove that ∣z−α∣2+∣z−β∣2=k represents a circle iff ∣α−β∣2<2k
∣z−α∣2+∣z−β∣2=k
(z−α)(zˉ−αˉ)+(z−β)(zˉ−βˉ)=k2zzˉ−zαˉ−zˉα+∣α∣2−zβˉ−zˉβ+∣β∣2=k2zzˉ−z(αˉ+βˉ)−zˉ(α+β)+∣α∣2+∣β∣2−k=0zzˉ−z(2αˉ+βˉ)−zˉ(2α+β)+c=0←(∗)
(∗) is circle ⇔ c<2α+β2
c<2α+β2
2∣α∣2+∣β∣2−K<41{∣α∣2+∣β∣2+αβˉ+αˉβ}
−2k<−∣α∣2−∣β∣2+αβˉ+αˉβ
∣α−β∣2<2k
Prove that
∣z−α∣=k∣z−β∣
represents a circle, where α,β∈C, k>0,k=1
Let complex numbers α and α1 lies on circles (x−x0)2+(y−y0)2=r2 and (x−x0)2+(y−y0)2=4r2, respectively, If z0=x0+iy0 satisfies the equation 2∣z0∣2=r2+2, then ∣α∣ is equal to
(1) 21 (2)21 (3)71 (4)31