Find the value of sin100sin200⋯sin800.
Solution:
We have proved the identity,
sinnπsinn2π⋯sinn(n−1)π=2n−1n
n=18,
sin18πsin182π⋯sin1817π=21718
Observation:
(1) In the expression, 9th term=1 , put k=9, sin18kπ=sin2π=1
(2) sin18(18−k)π =sin18kπ
[sin(n−k)π=sinnkπ; k=1,⋯,n]
∴sin18πsin182π ⋯sin1817π =21718
sin218π sin2182π ⋯sin2188π =2169
sin100 sin200⋯sin800 =283
Show that
(1) For n=2m,cosnπ cosn2π…cosn(m−1)π=2m−1m
(2) For n=2m+1,cosnπcosn2π…cosnmπ=2m−11
(3) For n=2m,tannπtann2π…tann(m−1)π=1
(4) For n=2m+1,tannπtann2π…tannmπ=2m+1
W.L.G. Pk= cis(n2kπ)=αk,
k=0,⋯,n−1
zn−1+zn−2+⋯+z+1=Πk=1n−1(z−αk)
z=1, n=Πk=1n−1(1−αk)
z=−1,
∣1−αk∣2=4(sinnkπ)2,k=0,⋯n−1
⇒∣1−αk∣=2sinnkπ,0≤nπ≤nkπ≤n(n−1)π≤π
P0Pk =2sinnkπ
⇒2sinnπ×2 sinn2π⋯2 sinn(n−1)π=n
sinnπ× sinn2π⋯sinn(n−1)π=2n−1n
Using this hint, we can show the result.
n=3,z3=1
→ {1, cis32π,cis34π}
→ω= cis32π=2−1+i23
→ω2= cis34π=(cis32π)2=ω2=ωˉ
1,ω,ω2 are cube roots of unity.
(1) 1+ω+ω2=0
(2) ω3=1=(cis32π)3=cis2π=1
ω3n=(ω3)n=1n∈Z
Find the value of
4+5(2−1+i 23)334+3(2−1+i 23)365
4+5 ω334 +3 ω365
=4+5⋅ ω333 ⋅ω+3 ⋅ω363⋅ω2
=4+5ω+3ω2(∴ω2=−ω−1)
=4+5ω−3ω−3
=1+2(2−1+i 23)
=i3
Prove that (3−i3+i)3(2n+1)=−1, for all n∈Z.
(3−i3+i)⋅(3+i3+i) =4(3+i)2 =i2 (21−23 i)2=−ω2
[∵ω=2−1+i 23]
(3−i3+i)3(2n+1)=(−ω2)3(2n+1) =(−1)6n+3(ω6)(2n+1)=−1
Find the least positive integer ’n’ such that
(1+ω2)n=(1+ω4)n
1+ω2=−ω
ω4=ω3⋅ω=ω
(1+ω2)n=(1+ω4)n
⇔(−ω)n=(−ω2)n
⇔ωn=ω2n
⇔ωn=1
n=3
Solve for z∈C: z2+z∣z∣+∣z∣2=0
z2+z∣z∣+∣z∣2=0→(1)
z=0(1) is satisfied
Let z= 0
∣z∣2z2+∣z∣z+1=0
(∣z∣z)2+(∣z∣z)+1=0
ω=∣z∣z,ω2+ω+1=0 It has two solution cis32π, cis34π
z=λω,λω2,λ≥0 are solution to (1)
∣1−ω∣=∣ω−ω2∣
∣1−ω∣=∣ω(1−ω)∣
∣1−ω∣=∣1−ω∣
∣1−ω∣=∣1−ω2∣
Equilateral Triangle
a=b=c
α=β=x
Proposition
Let T be a triangle with 15 vertices a,b,c in C (in anticlockwise direction).
Then the following are equivalent:
(i) T is equilateral triangle
(ii) a+ωb+ω2c=0,ω=cis32π
(iii) a2+b2+c2=ab+bc+ca
(i)⇔(ii)
(i)⇒(ii)a+ωb+ω2c =0→(1)
suppose (1) is satisfied
(a−z),(b−z),(c−z)
a−z+ω(b−z)+ω2(c−z)
=a+ωb+ω2c−z (1+ω+ω2)
=0→(2)
(1)⇔(2)
T is equilateral ⇔c−b=ω(b−a)
⇔c+aω−b(1+ω)=0
⇔aω+bω2+c=0
⇔a+bω+cω2=0
(ii) ⇔ (iii) (or) (i)⇔ (iii)
a2+b2+c2=ab+bc+ca
⇔ (a−z)2+(b−z)2+(c−z)2=(a−z)(b−z)+(b−z)(c−z)+(c−z)(a−z)
z=a shift the triangle T such that one of vertex is ‘0’.
W.l.g. O,B,C are vertices of T.
b2+c2=bc⇔ ωb+ω2c=0
b2+c2=bc⇔ ω=c−b
cb+bc+1 ⇒cb=1−bc
claim (c−b)3=1
(c−b)2=cb⋅(1−bc)=cb−1=−bc
(c−b)3=(c−b)2 (c−b)=b−c ⋅ c−b=1