Observation:
(1) In the expression, $9^{th}$ term=$1$ ,$\quad$ put k=9, $\sin \frac {k\pi}{18} = \sin \frac {\pi}{2} =1$
(2) $\sin \frac {(18-k)\pi}{18}\ = \sin \frac {k\pi}{18}$
$ [\sin (n - k) \pi = \sin\frac{k \pi}{n} ;$ $ k = 1, \cdots ,n]$
$\therefore \sin \frac{\pi}{18} \sin \frac{2\pi}{18}\ \cdots \sin \frac{17\pi}{18}\ =\frac{18}{2^{17}} $
$\sin ^2\frac{\pi}{18}\ \sin ^2\frac{2\pi}{18}\ \cdots \sin ^2\frac{8\pi}{18}\ =\frac{9}{2^{16}} $
$\sin 10^0\ \sin 20^0 \cdots \sin 80^0\ =\frac{3}{2^{8}} $