zn=1,(n≥1)
zk=cosn2kπ+i sinn2kπ,k=0,1,…n−1
=z1k
Notation
cisθ =cosθ+i sinθ
(cisθ)k=ciskθ
α=z1=cisn2π
αn=(cisn2π)n=cis2π=1
αkn=(αn)k=1k≥0
k<0,(αk)n=(αn)k=1
αkn=1 for all k∈Z
{1,α,α2,…..αn−1} are nth roots of unity
→αksatisfieszn=1
→αk is root of zn−1,k=0,1,….(n−1)
zn−1=(z−1)(zn−1+zn−2+…+z+1) , k=1,2,…,(n-1)
zn−1+zn−2+..z+1=(z−α)(z−α2)…(z−αn−2)
=Πk=1n−1(z−αk)
(a+ib)2016=a−ib
Given (a,b)∈R2 z=a+ib∈ C
consider z=a+ib
z2016=zˉ→(1)
⇒ ∣z∣2016=∣zˉ∣=∣z∣
⇒ ∣z∣2016−∣z∣=0
⇒ ∣z∣(∣z∣2015−1)=0
⇒ Either ∣z∣=0 or ∣z∣2015=1
If z=0, then ∣z∣=1
[z=0⇒∣z∣2015=1
If ∣z∣<1 or ∣z∣>1 then ∣z∣2015=1 ⇒∣z∣=1]
If ∣z∣=1, then ∣z∣2=1,zˉ=z1⇒∣z∣2015=1
From (1), z2016=zˉ
⇒z2017=1→ (2)
⇒ equation(2) has 2017 distinct solutions & z=0 is also solution to (1)
Equation (1) has 2018 solutions
let zk=cis(n2kπ),k=0,1,…,n−1
Then for any positive integer ’ m ’ the fallowing relation holds
∑k=0n−1zkm={n0 if n divides m otherwise
zk=αk
α=cis(n2π),k=0,1,…,n−1
Consider ∑k=0n−1zkm=∑k=0n−1(αk)m=∑k=0n−1(αm)k
Recall
∑k=0n−1ak=a−1an−1,a=1
⇒∑k=0n−1zkm=αm−1(αm)n−1
Σk=0n−1zkm=αm−1(αm)n−1=αm−1(αn)m−1
If n does not divide m, (αm=1)
Σk=0n−1zkm=0 (n∣m)
If m=qn,
Σk=0n−1zkqn=Σk=0n−1(αn)kq=n
(m=qn)
In particular,m=1
Σk=0n−1zk=0,n>1
⇒Σk=0n−1cosn2kπ+isinn2kπ=0
⇒∑k=0n−1cosn2kπ=0 and ∑k=0n−1sinn2kπ=0
⇒ cosn2π+ cosn4π+….+ cosn2(n−1)π=−1&
sinn2π+ sinn4π+….+ sinn2(n−1)π=0
Let α=cis(n2π)
and z be a complex number such that
∣z−αk∣≤1∣ ∀ k=0,1,….n-1
Then show that z=0
∣z−αk∣≤1k=0,1,…n−1
consider
∣z−αk∣2 =∣z−αk∣ ∣z−αk∣ ≤1
⇒ (z−αk)(z−αk)≤1
⇒∣z∣2−zαk−zˉαk+αk2≤1
⇒∣z∣2≤zαk+zˉαk,k=0,…,n−1
⇒ n ∣z∣2 ≤Σk=0n−1(z αkˉ+zˉαk)
⇒n∣z∣2⩽z∑k=0n−1αkˉ+zˉ∑k=0n−1αk
=0
⇒∣z∣=0⇒z=0
Let P0 P1… Pn−1 be a regular polygon inscribed in a circle of radius 1
Then show that
P0P1. P0P2. … P0Pn−1=n
sinnπ sinn2π …sinn(n−1)π=2n−1n
sin2nπ sin2n3π …sin2n(2n−1)π=2n−11
W.L.O.G.Pk =cis(n2kπ)=αk,
k=0,…n−1
zn−1+zn−2+..+z+1=Πk=1n−1(z−αk)
z=1,n=Πk=1n−1(1−αk)
i.e ∣πk=1n−1(1−αk)∣=n
⇒πk=1n−1∣1−αk∣=n
⇒ p0p1. p0p2. … p0pn−1=n
∣1−αk∣2=1−cosn2kπ−i sinn2kπ2
=(1−cosn2kπ)2+(sinn2kπ)2
=2−2cosn2kπ
=2(2sin2nkπ),k=1,…..n−1
∣1−αk∣2=4(sinnkπ)2,k=1,…..n−1
⇒∣1−αk∣=2sinnkπ,0≤nπ≤nkπ≤n(n−1)π≤π
P0Pk =2 sinnkπ
⇒2 sinnπ×2 sinn2π… 2 sinn(n−1)π=n
sinnπ×2 sinn2π… sinn(n−1)π=2n−1n