$ {\{1,\alpha,\alpha^2,…..\alpha^{n-1} \}}$ are $n^{th}$ roots of unity
$ \rightarrow \alpha^k satisfies\quad z^n=1$
$ \rightarrow \alpha^k ~ is\ root\ of\ z^n-1, k=0,1,….(n-1)$
$z^n-1 =(z-1)(z^{n-1}+z^{n-2}+… +z+1)$ , k=1,2,…,(n-1)
$z^{n-1} +z^{n-2}+..z+1=(z-\alpha)(z-\alpha^2)…(z-\alpha^{n-2})$
$=\Pi_{k=1}^{n-1}(z-\alpha^k)$