$(\cos \theta+i \sin \theta)^n=\cos 2 k \pi+i \sin 2 k \pi \quad k \in \mathbb{Z} $
$\cos n \theta+i \sin n \theta=\cos 2 k \pi+i \sin 2 k \pi \quad \quad k = 0,1,2,3…..$
For $\theta=\frac{2 k \pi}{n}, k=0,1,2, \cdots$.
the equation (1) holds.
Define $\theta_k=\frac{2 k \pi}{n}, k=0,1, \ldots, n-1$.
& $ z_k=\cos \theta_k+i \sin \theta_k, k=0,1, \ldots, n-1 $
$\Rightarrow \quad \left(z_k\right)^n=1, k=0,1, \ldots, n-1 $