z=r(cos(θ)+isin(θ))
where r≥0 & 0≤θ≤2π
z=r(cos(θ+2kπ)+isin(θ+2kπ))
k∈Z
1−i=2(cos(47π)+isin47π)
1−i=2(cos(4−π)+isin(4−π))
cos4π=21sin(4π)=21
z=r(cosθ+isinθ)
where r≥0 & 0≤θ≤2π
z=r(cos(θ+2kπ)+isin(θ+2kπ))
k∈Z
De moivre’s formula
(cosθ+isinθ)n=cosnθ+i sinnθ
Division
z1=r1(cosθ1+isinθ1)
z2=r2(cosθ2+isinθ2)
z2z1=r2(cosθ2+isinθ2)r1(cosθ1+isinθ1)=r2( cos2θ2+isin2θ2)r1(cosθ1+isinθ1)(cosθ2−isinθ2)
r2r1=[cos(θ1−θ2)+isin(θ1−θ2)]
z1=1+iz2=i
z2z1=12[cos(4−π)+isin(4−π)]
z2z1=(1−i)
z1=2(cos4π+isin4π)
z2=1(cos2π+isin2π)
(i) z2z1=r2r1=∣z2∣∣z1∣(z2=0)
(ii) zn=(cosθ+isinθ)n
n=−1,−2,…
n=−1z−1=z1=cosθ+isinθ1
=11[cos(0−θ)+isin(0−θ)]
=cos(−θ)+isin(−θ)
n=−2;
z−2=z21=z1×z1=[cos(−θ)+isin(−θ)]2
z−2=cos(−2θ)+isin(−2θ)
zn=cos nθ+isin nθnϵZ.
z=(1+i3)n+(1−i3)n
z=2[cos3π+isin3π]n+2(cos(3−π)+isin(3−π))n
tan−1(13)=3π
z=2n(cos3nπ+isin3nπ)+2n[(cos(3−nπ)+isin(3−nπ))]
z=2n+1cos3nπ
Find the nth roots of unity
zn=1
observation :suppose there is a z0ϵ C
such that z0n=1.then∣z0∣=1.
∣z0n∣=∣1∣
∣z0∣n=1
⇔∣z0∣=1
Fix n=1;z1=1⇒z=1
n=2;z2=1
⇒z1=1,z2=−1
n=3;z3=1
z1=1
z2=cos120∘+isin120∘
z23=(cos120∘+isin120∘)3
z23=cos360∘+isin360∘ (By De Moivre formula)
=1
z33=(z2×z2)3=1
n=4;z4=1
z1=1,z2=iz3=−1z4=−i
nth roots of unity
zn=1
zn=cos2kπ+isin2kπ
(cosθ+isinθ)n=cos2kπ+isin2kπk∈Z
cosnθ+isinnθ=cos2kπ+isin2kπk=0,1,2,3…..
For θ=n2kπ,k=0,1,2,⋯.
the equation (1) holds.
Define θk=n2kπ,k=0,1,…,n−1.
& zk=cosθk+isinθk,k=0,1,…,n−1
⇒(zk)n=1,k=0,1,…,n−1
Claim : {zk : k∈ Z} = {zk:k=0,1,…n−1}
Let r∈ Z θr=n2rπ→zr
By quotient reminder theorem .
r=qn+k where q∈Z,k∈0,1,…n−1
θr=n2π(qn+k)=2πq+n2kπ=2πq+θk
zr=cos(2πq+n2kπ)+isin(2πq+n2kπ)
zr=cos(n2kπ)+isin(n2kπ)
zr=zk
The nth roots of unity :zn=1
zk=cos(n2kπ)+isinn2kπ,k=0,1,…n−1.
n=2,z2=1
z0=1z1=cosπ+isinπ
z1=−1
n=3,z3=1
z0=1z1=cos32π+isin32π
z2=cos34π+isin34π.
θ1=n2π
θ2=n2π+n2π
n=8
(1) The geometric image of the nth roots of unity are the vertices of a regular polygon with n sides inscribed in the unit circle with one of the vertices at 1.
(2) z1=cosn2π+isinn2π
z12=cosn4π+isinn4π
z1k=cosn2kπ+isinn2kπ, (By De Moivre’s theorem )
z1k=zk
The nthroot of unity
{z0,z1,z2…,zn−1}={z10,z11,z12,….z1n−1}