$ z = r \cos \theta + i\ r \sin \theta \quad r ≥ 0 , \theta \in [0, { \theta} {\pi}] $
$ z = r (cos \theta + i\sin \theta) $
This representation is called the polar representation of $z$.
Polar coordinates system, $ (r, \theta) $
Cartesian coordinates system, $ (x, y) $
Given $(r, \theta) \mapsto x=r \cos \theta, y=r \sin \theta$
$ r = \sqrt {x^2+y^2} \mapsto (x, y) $
$ \tan \theta = \frac {y} {x}$