z=x+iy,x,y∈R
Argand plane or complex plane
r - distance from the origin O to the point P.
θ -angle between OP and the +(ve) x-axis.
cosθ=rx
x=rcosθ
y=rsinθ
z=rcosθ+i rsinθr≥0,θ∈[0,θπ]
z=r(cosθ+isinθ)
This representation is called the polar representation of z.
Polar coordinates system, (r,θ)
Cartesian coordinates system, (x,y)
Given (r,θ)↦x=rcosθ,y=rsinθ
r=x2+y2↦(x,y)
tanθ=xy
z=r(cosθ+isinθ)
z=r cis θ, cis θ=cosθ+isinθ
(1) z=r(cosθ+isinθ)
z=r[(cos(θ+2kπ)+isin(θ+2kπ)] k∈Z.
i.e., (r,θ+2kπ)↦x=rcosθ,y=rsinθ
(2) tanθ=11
θ=4π
z=1+i=2(cos4π+isin4π)
consider 2[cos(4−π)+isin(4−π)]
=2[cos4π−isin4π]=zˉ
z1=r[cos(−θ)+isin(−θ)
=zˉ
(r,θ+2kπ), k∈Z↦x=rcosθ,y=rsinθ
θ∘≤θ≤θ∘+2π
θ∘=00≤θ<2π
π<θ≤π
Principal argument of z=θ∈(−π, π]
(3) r=0θ∈[0,2π]
(0,θ) represents the origin.
It means that we do not have well defined polar representation for the origin.
Observation tan(x+π)=tanx
tan(x+kπ)=tanx, for k∈Z
Find θ∈(−π,π) such that tan(θ)=xy
(θ)=tan−1(xy)+kπ,k∈Z
Restrict tan−1(xy) in the interval (2−π,2π)
which we call it as arc tanxy
θ= arc tanxy+k+π
If x=0
arg (z) = arc tan(xy)+k+π
Where k+=
If x=0z=−1+i
r=1+1=2
θ= arc tan−11+k+π
θ=4−π+π
θ=43π
Exercise: Z=2+23i
z = x + i y | arg(z) |
---|---|
Ist & IV quadrant | arc tan (y/x) |
II quadrant | arc tan (y/x) + π |
III quadrant | arc tan (y/x)- π |
Z=1+cosa+isina,a∈(0,2π)
r=(1+cosc)2+sin2c=2+2cosa
r=2(1+cosa)=2.2cos22a
r=2∣cos2a∣
For a∈(0,π),z is in the 1st quadrant
θ= arc tan(1+cosasina)= arc tan(2cos22a2sin2acos2a)
arc tan(tan(2a))=2a
a∈(π,2π)
Verify that θ=2a−π
a=π,z=1+cosπ+isinπ
=0
z1=r1 cis θ1z2=r2 cis θ2
z1.z2=r1r2[cosθ1−sinθ1,sinθ2+i(cosθ1sinθ2+sinθ1cosθ2)]
z1.z2=r1r2 cis (θ1+θ2)
Remark: ∣z1.z2∣=r1r2=∣z1∣∣z2∣
arg (z1z2)= arg (z1)+ arg (z2)+k+2π
where
z1=1+iz2=3+i
z1=2 cis (4π),z2=2 cis (6π)
z1z2=22 cis (125π)
De Moivre’s Formula
z=r(cosθ+isinθ)
zn=rn(cosnθ+isinnθ)n≥1
z2=z.z=r2(cos2θ+isin2θ)
z1=1+i
Calculate z1000
(1+i)1000=[2 cis (4π)]1000
(1+i)1000=2500 cis (250π)
(1+i)1000=2500
Exercise: prove that
sin5θ=16sin5θ−20sin3θ+5sinθ
cos5θ=16cos5θ−20cos3θ+5cosθ
Hint: cis 5θ=(cis θ)5