- Addition:
- Product:
- is a field
C={a+ib:a,b∈R}
z=a+ib
(1) Real parts of z:Re(z)=a
(2) Imaginary part of z:Im(z)=b
(3) If Re(z)=0, then we say that z is purely an imaginary number.
(4) If Im(z)=0, then we say that z is purely real number.
Conjugate of z=a+ib:
zˉ=a−ib
(1) z=zˉ iff z∈R (or) Im(z)=0
Let z=a+ib. Suppose z=zˉ ⇔a+ib=a−ib
⇔2ib=0
⇔b=0
i.e., Im(z)=0
(2) z=zˉˉ
Proof: Let z=a+ib⇒zˉ=a−ib=a+i(−b)
zˉ=a+i[−(−b)]
=a+ib
(3) z1+z2=zˉ1+zˉ2
Proof: z1=a+ibz2=c+id
z1+z2=(a+c)+i(b+d)=(a+c)−i(b+d)
=a−ib+c−id
=zˉ1+zˉ2
(4) For every z∈C
zzˉ is a non-negative real number.
(a+ib)(a−ib)=a2+b2≥0
Remark
(5) z1.z2=zˉ1.zˉ2
z1.z2=(a+ib)(c+id)=(ac−bd)−i(ad+bc)
=(a−ib).(c−id)
=zˉ1.zˉ2
(6) zˉ−1=(zˉ)−1,z=0
Proof: z.z−1=1
z.z−1=1 ⇒zˉ.zˉ−1=1
⇒(zˉ)−1=z−1
(7) (z2z1)=zˉ2zˉ1,z2=0
Proof: From 5 and 6,
(z2z1)=(z1.z21)=zˉ1.zˉ2−1
=zˉ1.(zˉ2)−1
(z2z1)=zˉ1.(zˉ2)−1=zˉ2zˉ1
z1:=z−1 ; z.z−1=1
z.z1=1
z−1=z1.zˉzˉ=zzˉzˉ=a2+b2a−ibz=a+ib
=a2+b2a−a2+b2ib
(8) Re(z)=2z+zˉ Im(z)=2iz−zˉ
z=Re(z)+i Im(z)
z=Re(z)−iIm(z)
If x+iy=c+ida+ib, then show that (x2+y2)2=c2+d2a2+b2
z=b → z2=b
(x+iy)2=c+ida+ib
L.H.S =(x+iy)2(x+iy)2=(x+iy)2(x−iy)2
=(x2+y2)2{∵(x+iy).(x−iy)=x2+y2}
R.H.S =c+ida+ibc−ida−ib=c2+d2a2+b2
i.e.,(x2+y2)2=c2+d2a2+b2
=z1.(z1+z2)+z2.(z1+z2)
=z12+z1z2+z2z1+z22
=z12+2z1z2+z22
Let z1,z2∈C. Show that z1.zˉ2+zˉ1.z2 is a real number.
If the sum and product of three complex numbers are real then which of the following is/are possible for some z1,z2,z3∈C:
(a) Exactly one of the three number is non-real.
(b) Exactly two of the three numbers are non-real.
(c) All three numbers are non-real.
(d) All three numbers are pure imaginary and non-zero.
(a) is not possible.
z1=zˉ1,z2=a,z3=b,a and b∈R
z1+z2+z3=z1+a+b∈/R
(b) z1+z2+z3∈R
z1.z2.z3∈R
z1=1+i z2=1−i z3=1
Yes
(c) Yes z1=1−i, z2=1−i, z3=2i
z1z2=12−1−2i
=−2i
(d) Exercise
No
z=1+i
z=5
z=i∣z∣=12=1