$z=\sqrt{b} \ \rightarrow \ z^2=b$
$(x+iy)^2=\frac{a+ib}{c+id}$
L.H.S $=(x+iy)^2 \overline {(x+iy)^2}=(x+iy)^2(x-iy)^2$
$=(x^2+y^2)^2 \quad \{\because (x+iy).(x-iy)=x^2+y^2 \}$
R.H.S $=\frac{a+ib}{c+id} \frac{a-ib}{c-id}=\frac{a^2+b^2}{c^2+d^2}$
$i.e., (x^2+y^2)^2=\frac{a^2+b^2}{c^2+d^2}$