Quadratic equations lecture - 2
Quadratic equations lecture - 2
Sum and product of quadratic equation
suppose α,β→ roots
x=α
x−α will be factor of quadratic equation
ax2+bx+c=0
x=β
x−β will also be factor of ax2+bx+c=0
Quadratic equations lecture - 2
Sum and product of quadratic equation
(x−α)(x−β)=0
x2−βx−αx+αβ=0
x2−(α+β)x+αβ=0
x2−(sum of roots)x+product of roots=0
Quadratic equations lecture - 2
Example
2+3,2−3
Now,α+β=2+3+2−3=4
Now,αβ=(2+3)(2−3)
=22−(3)2
=4−3=1
Quadratic equations lecture - 2
Quadratic equation
x2−(α+β)x+αβ=0
x2−4x+1=0
Quadratic equations lecture - 2
Example
α=2+i
β=2−i
α+β=2+i+2−i=4
αβ=(2+i).(2−i)
=22−(i)2=4+1=5
Quadratic equations lecture - 2
Quadratic equation
x2−(α+β)x+αβ=0
x2−4x+5=0
Quadratic equations lecture - 2
Transformation of quadratic equation
ax2+bx+c=0
put x=y1
Equation,
a(y1)2+b(y1)+c=0
⇒y2a+yb+c=0
Quadratic equations lecture - 2
Transformation of quadratic equation
⇒y2[y2a+yb+c]=0×y2
⇒a+by+cy2=0
⇒cy2+by+a=0
Quadratic equations lecture - 2
Example
x2+7x+12=0
put x=1/y
⇒y21+7(y1)+12=0
⇒y21+y7+12=0
⇒12y2+7y+1=0
Quadratic equations lecture - 2
Example
x2+7x+12=0
⇒x2+(4+3)x+12=0
⇒x2+4x+3x+12=0
⇒x(x+4)+3(x+4)=0
⇒(x+4) (x+3)=0
⇒x=−3,−4
Quadratic equations lecture - 2
Example
12y2+7y+1=0
Now we shall find out the root of this quadratic equation should be 1/-3,1/-4.
Let us try to find out the root of the
Quadratic equations lecture - 2
Example
12y2+7y+1=0
⇒12y2+(4+3)y+1=0
⇒12y2+4y+3y+1=0
⇒4y(3y+1)+1(3y+1)=0
⇒(3y+1) (4y+1)=0
⇒y=3−1,4−1
Quadratic equations lecture - 2
Transformation of quadratic equation
ax2+bx+c=0
put x=−y
⇒a(−y)2+b(−y)+c=0
⇒ay2−by+c=0
Quadratic equations lecture - 2
Example
x2−3x+2=0
⇒ x=−y
transformed quadratic equation
⇒(−y)2−3(−y)+2=0
⇒y2+3y+2=0
Quadratic equations lecture - 2
Example
x2−3x+2=0
⇒x2−(2+1)x+2=0
⇒x2−2x−x+2=0
⇒x(x−2)−1(x−2)=0
⇒(x−2) (x−1)
⇒x=1,2
Quadratic equations lecture - 2
Example
y2+3y+2=0
⇒y2+(2+1)y+2=0
⇒y2+2y+y+2=0
⇒y(y+2)+1(y+2)=0
⇒(y+2) (y+1)
⇒y=−2,−1
Quadratic equations lecture - 2
Example
x2−3x+2=0→ (1,2)
⇒ x=−y
transformed quadratic equation
⇒(−y)2−3(−y)+2=0
⇒y2+3y+2=0→ (-1,-2)
Quadratic equations lecture - 2
Transformation of quadratic equation
⇒ax2+bx+c=0
⇒put x=y
⇒a(y)2+b(y)+c=0
⇒ay+by+c=0
⇒ay+c=−by
Quadratic equations lecture - 2
Example
⇒squaring both sides
⇒(ay+c)2=b2y
⇒a2y2+c2+2acy=b2y
⇒a2y2+(2ac−b2)y+c2=0
Quadratic equations lecture - 2
Example
x2+7x+12=0
put x=y
⇒a(y)2+7(y)+12=0
⇒y+7y+12=0
⇒(y+12)=−7y
⇒squaring both sides
y2+144+24y=49y
Quadratic equations lecture - 2
Quadratic equation
y2−25y+144=0
Now find the root of the first quadratic equation
Quadratic equations lecture - 2
Quadratic equation
⇒x2+7x+12=0
⇒x2+(4+3)x+12=0
⇒(x+4) (x+3)=0
⇒x=−3,−4
⇒y2−25y+144=0
Quadratic equations lecture - 2
Quadratic equation
⇒y2−(16+9)y+144=0
⇒y2−16y−9y+144=0
⇒y(y−16)−9(y−16)=0
⇒(y−16)(y−9)=0
⇒y=16,9
⇒x=−3,−4
Quadratic equations lecture - 2
Quadratic equation
(I)→a1x2+b1x+c1=0
(II)→a2x2+b2x+c2=0
α is the common root
a1α2+b1α+c1=0
⇒a2α2+b2α+c2=0
(b1c2−b2c1)α2=c1a2−c2a1α=a1b2−a2b11
α2=a1b2−a2b1b1c2−b2c1
α=a1b2−a2b1c1a2−c2a1
Quadratic equations lecture - 2
Quadratic equation
α2=(α)2
a1b2−a2b1b1c2−b2c1=(a1b2−a2b1c1a2−c2a1)2
⇒a1b2−a2b1b1c2−b2c1=(a1b2−a2b1)2(c1a2−c2a1)2
⇒(c1a2−c2a1)2=(b1c2−b2c1)×(a1b2−a2b1)
Quadratic equations lecture - 2
Example
Find the value of k, if the equations 2x2+kx-5=0 and x2-3x-4=0 have one roots in common.
Quadratic equations lecture - 2
Solution
α be the common root.
⇒2α2+kα−5=0
⇒α2−3α−4=0
Quadratic equations lecture - 2
Solution
−4k−15α2=−5+8α=−6−k1
−4k−15α2=3α=−6−k1
α2=k+64k+15,α=k+6−3
⇒α2=α2
Quadratic equations lecture - 2
Solution
k+64k+15=(k+6)29
⇒4k2+24k+15k+90=9
⇒4k2+39k+81=0
⇒4k2+27k+12k+81=0
⇒k(4k+27)+3(4k+27)=0
⇒k=4−27,−3
Quadratic equations lecture - 2
Example
If a,b,c are +ve real numbers such that the equations ax2+bx+c=0 and bx2+cx+a=0 have common root, then find the relation in among a,b and c.
Quadratic equations lecture - 2
Solution
α be the common root
⇒aα2+bα+c=0⟶(1)
⇒bα2+cα+a=0⟶(2)
ab−c2α2=cb−a2α=ac−b21
α2=ac−b2ab−c2
α=ac−b2cb−a2
Quadratic equations lecture - 2
Solution
⇒α2=(α)2
⇒ac−b2ab−c2=(ac−b2cb−a2)2
⇒(ab−c2)(ac−b2)=(cb−a2)2
⇒a2bc−ab3−ac3+b2c2=b2c2+a4−2a2bc
⇒3a2bc=a4+ab3+ac3
⇒a3+b3+c3=3abc
Quadratic equations lecture - 2
Cubic equation
a0x3+a1x2+a2x+a3=0
a0=0 ,a0,a1,a2,a3ϵR
⇒ Relation between roots of cubic equation and its coefficient.
Quadratic equations lecture - 2
Cubic equation
⇒a0x3+a1x2+a2x+a3=0
α,β,γ→roots
⇒a0x3+a1x2+a2x+a3=a0(x−α)(x−β)(x−γ)
⇒a0x3+a1x2+a2x+a3=a0[(x2−(α+β)x+αβ](x−γ)
Quadratic equations lecture - 2
Cubic equation
⇒a0x3+a1x2+a2x+a3=a0[(x3−γx2−(α+β)x2+(α+β).γx+αβx−αβγ]
=a0[(x3−(α+β+γ)x2+(αβ+βγ+γα)x−αβγ]
Quadratic equations lecture - 2
Cubic equation
⇒a0x3+a1x2+a2x+a3=a0x3−a0(α+β+γ)x2+a0(αβ+βγ+γα)x−a0αβγ
⇒x2→
a1=−a0(α+β+γ)
S1=α+β+γ=−a0a1
Quadratic equations lecture - 2
Cubic equation
x→a2=a0(αβ+βγ+γα)
S2=αβ+βγ+γα=a2a2
conc. S3=αβγ=−a0a3
Quadratic equations lecture - 2
Example
Find the value of α+β+γ, αβ+βγ+γα and αβγ if α,β,γ are the roots of cubic equation x3+6x2+5x−12=0
sol:a0x3+a1x2+a2x+a3=0
a0=1,a1=6,a2=5,a3=−12
α+β+γ=−a0a1
=−16
=−6
Quadratic equations lecture - 2
Example
αβ+βγ+γα=−a0a2
=15
=5
αβ+βγ+γα=−a0a3
=+112
=12