Quadratic equation lecture 4
Quadratic equation lecture 4
Question
Solve for real solutions:
1.) x2−3x−4=9−x2−1
2.) ∣(x−4)(x+1)∣=9−∣(x+1)(x−1)∣
3.) ∣x−4∣∣x+1∣=9−∣x+1∣∣x−1∣
Quadratic equation lecture 4
Solution
i) Let x<−1[−(x−4)][−(x+1)]=9−[(−(x+1))(−(x−1))](x−4)(x+1)=9−(x+1)(x−1).2x2−3x−14=0(2x−7)(x+2)=0⇒x=27,−2∴x=−2
Quadratic equation lecture 4
Solution
ii) Let
−1≤x<+1
−(x−4)(x+1)=9+(x+1)(x−1)
−x2+3x+4=9+x2−1
2x2−3x+4=0
D<0, no real solution
Quadratic equation lecture 4
Solution
iii) Let 1≤x<4
−(x−4)(x+1)=9−(x+1)(x−1)
3x+4=10⇒x=2
Quadratic equation lecture 4
Solution
iv) Letx=4.
The roots are 27,−2
Since x ⩾4, there is no solution.
∴ The my val sections are x=±2.
Quadratic equation lecture 4
Question
Consider 4x3−3x−p=0, where −1≤p<1 Show that there exsist exactly one solution on [21,1]. and find out.
Quadratic equation lecture 4
Solution
Letf(x)=4x3−3x−p
f(y2)=4(21)3−3⋅21−p
=−(1+p)
f(1)=1−p
f(1)⋅f(21)=(p+1)(p−1)=p2−1≤0
Quadratic equation lecture 4
Solution
f(1/2) & f(1) have Opp. signs
∃x0∈(1/2,1) s.t f(x0)=0.
Uniqueness.
f′(x)=12x2−3
Quadratic equation lecture 4
Solution
=12(x−21)(x+21)
On [y,1],f′(x)>0
f(x) is mmantically increaring.
∴f(x)=0 has exactly one sol’n on [21,1]
Quadratic equation lecture 4
Solution
To find the root:
Put x=cosθ
4cos3θ−3cosθ=p
cos3θ=p
⇒3θ=cos−1(p)⇒θ=31cos−1(p)
∴cosθ=cos(31cos−1(p))
∴x=cos(31cos−1(p))
Quadratic equation lecture 4
Question
Suppose ∫01(1+cos8x)(ax2+bx+c)dx=∫02(1+cos8x)(ax2+bx+c)dx where a,b,c∈R. Show that ∃ a root for the equation.
x2+bx+c=0 on (1,2)
Quadratic equation lecture 4
Solution
Take f(x)=∫0x(1+cos8t)(at2+bt+c)dt
Given f(1)=f(2).
By Rolle’s theorem, ∃c∈(1,2) s.t.
f′(c)=0.
Quadratic equation lecture 4
Solution
(ie) (1+cos8k)(ak2+bk+c)=0
⇒ak2+bk+c=0.
Ex. If a+b+c=0, then 3ax2+2bx+c=0 has atleast one roort on (0,1).
Apply Role’s theorem
Quadratic equation lecture 4
Question
Let f(x)=ax2+bx+c>0∀x∈R
Set g(x)=f(x)+f′(x)+f′′(x).
Then show that g(x)>0∀x∈R.
Quadratic equation lecture 4
Solution
⇒Df<0 & a>0
g(x)=ax2+bx+c+2ax+b+2a
=ax2+(b+2a)x+2a+b+c
Dg=(b+2a)2−4a(2a+b+c)
=(b2−4ac)−4a2<0
∴g(x)>0∀x∈R
Quadratic equation lecture 4
Question
If α and β real roots of ax2+bx+c=0 where α<−1 and β>1, then show that
1+ac+ab<0.
Quadratic equation lecture 4
Solution
We have
af(1)<0;af(1)<0
a(a−b+c)<0;a(a+b+c)<0
Dividing by a2,
1−ab+ac<0;1+ab+ac<0
(ie) 1±ab+ac<0
(ie) 1+ab+ac<0.
Quadratic equation lecture 4
Question
Solve for real solutions:
log2x+5(6x2+17x+5)=4−log3x+1(4x2+20x+25)
Quadratic equation lecture 4
Solution
log2x+5((2x+5)(3x+1))=4−log3x+1(2x+5)2
log2x+52x+5+log2x+53x+1=4−2log3x+12x+5
1+log3x+13x+12x+5=4−2log3x+12x+5)
Put y=log2x+53x+11+y=4−y2y2−3y+2=0⇒y=1,2.y1=log3x+12x+5
Quadratic equation lecture 4
Solution
Take y=1
log2x+53x+1=1
⇒2x+5=3x+1
⇒x=4.
Take y=2.
log2x+53x+1=2
⇒(2x+5)2=3x+1
Quadratic equation lecture 4
Solution
(ie) 4x2+17x+24=0
Here D<0. Thus are no real solution.
∴x=4 is the only real solution.
Quadratic equation lecture 4
Question
Suppose 1+log5(x2+1)⩾log5(ax2+4x+a)∀x∈R Find the range of a
Quadratic equation lecture 4
Solution
1⩾log5x2+1ax2+4x+a
log55⩾logx2+1ax2+4x+a
⇒5⩾x2+1ax2+4x+a
Note that ax2+4x+a>0 & x2+1>0
Quadratic equation lecture 4
Solution
Consider ax2+4x+a
D=16−4a2<0 and a>0
a2>4,a>0
∴a>2
a>2 or a<−2
⇒ax2+4x+a≤5(x2+1)
(5−a)x2−4x+(5−a)⩾0∀x∈R
Quadratic equation lecture 4
Solution
This is the ⇔16−4(5−a)2≤0 & 5−a>0
(5−a)2⩾4,a<5
∴5−a⩾2 or 5−a⩽−2;a<5[5−a⩾2 or 5−a⩽−2]
a≤3 or a⩾7;a<5
⇒a≤3. The range of a is (2,3).
Quadratic equation lecture 4
Question
Solve:
xy+yz=63
xz+yz=23,x,y,z∈N
Quadratic equation lecture 4
Solution
z(x+y)=23 Note, x+y⩾2
Since 23 is prime.
z=1 & x+y=23
⇒y=23−x
y(x+z)=63
(23−x)(x+1)=63
x2−22x+40=0
x=2,20
Quadratic equation lecture 4
Solution
Take x=2,⇒y=21
Tate x=20⇒y=3
(2,21,1) & (20,3,1) are the 2 solution.