$\sum_{n \geqslant 1} \frac{a_n}{10^n}=\sum_{n \geqslant 1} \frac{\alpha^n-\beta^n}{(\alpha-\beta) 10^n}$
$=\frac{1}{\alpha-\beta} \sum_{n \geqslant 1} \frac{\alpha^n}{10^n}-\frac{1}{\alpha-\beta} \sum_{n \geqslant 1} \frac{\beta^n}{10^n}$
$=\frac{1}{\alpha-\beta}(\frac{\alpha}{10-\alpha}-\frac{\beta}{10-\beta})$
$=\frac{1}{\alpha-\beta} \cdot\{\frac{10 \alpha-\alpha \beta-10 \beta+\alpha \beta}{100-10(\alpha+\beta)+\alpha \beta}\}$
$ =\frac{1}{\alpha-\beta} \cdot \frac{10(\alpha-\beta)}{100-10(\alpha+\beta)+\alpha \beta}$
$=\frac{10}{100-10-1}$
$=\frac{10}{89}$