- For $0 \leq \alpha \leq 1$, if the line $x=\alpha$ divides the area of the region
${R}=\{{(x, y)} \in \mathbb{R}^2: {x^3 \leq y \leq x} \text { and } 0 \leq x \leq 1 \}$
into two equal parts, then
(1) $ 0<\alpha \leq \frac{1}{2}$
(2) $ \frac{1}{2}<\alpha< 1$
(3) $ 2 \alpha^4-4 \alpha^2+1=0$
(4) $ \alpha^4+4 \alpha^2-1=0$