$ x^2+x-3=0 $
$ x=\frac{-b \pm \sqrt{b^2-4 a c}}{2 a}$
If $\alpha$ & $\beta$ are roots of the given equation.
$\alpha^3-4 \beta^2+19=\text { ? }$
======
$ x^2+x-3=0 $
$ x=\frac{-b \pm \sqrt{b^2-4 a c}}{2 a}$
If $\alpha$ & $\beta$ are roots of the given equation.
$\alpha^3-4 \beta^2+19=\text { ? }$
======
Put $x-a=y$
$y(y-b)=1 $
$y^2-b y-1=0$
$D=b^2+4>0$
======
Thus are 2 distinct real roots, say $\alpha $ & $\beta$ :
$\alpha \beta=-1 \Rightarrow \alpha $ & $ \beta$ have opp. signs
$ \alpha<0<\beta $
$ x=a+y $
$ \alpha<a<\beta $