Problems on quadratic equation lecture - 1
Problems on quadratic equation lecture - 1
Solution of quadratic equation
y=ax2+bx+c,a,b,c∈R,a=0
i) To Solve: ax2+bx+c=0⟶ (1)
ii) The exact shape of the parabola
x2+1=0
D: =b2−4ac
If D > 0 , 2 real distinct solutions
If D = 0, We have only solution (real)
If D < 0 , No real solution, but it has solutions of the form
α+iβ & α−iβ.
Problems on quadratic equation lecture - 1
Graph of quadratic equation
D > 0 , a > 0
D > 0 , a < 0
D = 0 , a > 0
D = 0 , a < 0
D < 0 , a > 0
D < 0 , a < 0
Problems on quadratic equation lecture - 1
Notes
1) For ax2+bx+c=0
The point of maxima or minima are attained at x=−2ab
2) α & β roots of ax2+bx+c=0
α+β=−b/a
αβ=c/a
Problems on quadratic equation lecture - 1
Problem
x2+x−3=0
x=2a−b±b2−4ac
If α & β are roots of the given equation.
α3−4β2+19= ?
Problems on quadratic equation lecture - 1
Solution
Let a=α3−4β2+19
b=β3−4α2+19
a+b=α3+β3−4(α2+β2)+38
=(α+β)[(α+β)2−3αβ]−4((α+β)2−2αβ)+38
(∵α+β=−1,αβ=−3)
=(−1)[1+9]−4(1+6)+38=0
Problems on quadratic equation lecture - 1
Solution
a−b=α3−β3+4(α2−β2)
=(α−β)[(α+β)2−αβ]+4(α+β)(α−β)
=(α−β)[1+3]+(α−β)[−4]
a−b=0
⇒2a=0.
Hence a=0
Problems on quadratic equation lecture - 1
Example
(x−a)(x−a−b)=1;a,b∈R
Prove that there are 2 real roots α & β
such that α<a<β.
Problems on quadratic equation lecture - 1
Solution
Put x−a=y
y(y−b)=1
y2−by−1=0
D=b2+4>0
Problems on quadratic equation lecture - 1
Solution
Thus are 2 distinct real roots, say α & β :
αβ=−1⇒α & β have opp. signs
α<0<β
x=a+y
$ \alpha
Problems on quadratic equation lecture - 1
Example
Let m⩾−1
x2+2(m−2)x+m2−3m+3=0
Given that this has 2 distinct roots α & β.
If α2+β2=6, find m.
Problems on quadratic equation lecture - 1
Solution
D=4(m−2)2−4(m2−3m+3)
=−4m+4>0
⇒m<1
∴−1≤m<1
Problems on quadratic equation lecture - 1
Solution
α+β=−2(m−2)
αβ=m2−3m+3
6=α2+β2=(α+β)2−2αβ
=2m2−10m+10
We get,
2m2−10m+4=0
m=25±17
∴m=25−17
Problems on quadratic equation lecture - 1
Example
2x2−3x−1=0←p is a root
x2+3x−2=0←q is a root
Given pq=1. Find the value of qpq+p+1
Problems on quadratic equation lecture - 1
Solution
2p2−3p−1=0⟶ (1)
q2+3q−2=0⟶ (2)
−q2[−1−q3+q22]=0
⇒2⋅q21−q3−1=0
q1 is a root of the equation 2x2−3x−1=0
Problems on quadratic equation lecture - 1
Solution
∴p+q1=23 and qp=−21.
qpq+p+1=p+qp+q1
=3/2−1/2=1
Problems on quadratic equation lecture - 1
Example
x2+2x1+x2+6x+81+x2+10x+241=51−x2+14x+481
Problems on quadratic equation lecture - 1
Solution
x(x+2)1+(x+4)(x+2)1+(x+6)(x+4)1+(x+8)(x+6)1=51
21[x1−x+21+x+21−x+41+x+41−x+61+x+61−x+81]=51
21[x1−x+81]=51
x2+8x−20=0⇒x=2 & −10.
Problems on quadratic equation lecture - 1
Example
If 2x2−3x+x22−3x=1, find the product of the real roots, where, x=0
Problems on quadratic equation lecture - 1
Solution
2(x2+x21)−3(x+x1)=1
2y2−3y−4=1[y=x+x1]
2y2−3y−5=0
⇒y=5/2,−1
Problems on quadratic equation lecture - 1
Solution
y=−1⇒x+x1+1=0
(ie) x2+x+1=0 which has no real roots.
y=5/2⇒x+x1=5/2
2x2−5x+2=0 whose roots are 21 & 2.
Product = 1
Problems on quadratic equation lecture - 1
Example
If x2+x(1−3α)+2−α=0
Find α so that this equation has real roots.
Problems on quadratic equation lecture - 1
Solution
To have b2−4ac⩾0,
(1−3α)2−4(2−α)⩾0
9α2−9α+7α−7⩾0
(α−1)(9α+7)⩾0.
This is possible if α≥1 or if α≤−7/9
∴α∈(−∞,−7/9]∪[1,∞)
Problems on quadratic equation lecture - 1
Example
ax2+bx+c=0⟵α is a root
−ax2+bx+c=0⟵β is a root.
Show: 2ax2+bx+c=0 has a root between α & β.
Problems on quadratic equation lecture - 1
Solution
Take p(x)=2ax2+bx+c
p(α)=2aα2+bα+c=[aα2+bα+c]−2aα2=−2aα2
p(β)=2aβ2+bβ+c=[−aβ2+bβ+c]+23aβ2=23aβ2
∴p(α)p(β) have opposite Signs.
p(x)=0 for some x∈(α,β).
Problems on quadratic equation lecture - 1
Example
2016x2+2017x+1=0.
x=−1 is a solution
By dividing the expression 2016x2+2017x+1 by x+1 , we get, 2016x+1
So, another factor is 2016x+1
⇒ x=−1 & x=−1/2016
Problems on quadratic equation lecture - 1
Example
∣x∣2−5∣x∣+6=0.
y2−5y+6=0[Put∣x∣=y]
⇒y=3,2.
∣x∣=3⇒x=±3
∣x∣=2⇒x=±2
Problems on quadratic equation lecture - 1
Examples
Case (i) ∣x−2∣2+∣x−2∣−2=0 Verify that Roots are 3 & -1.
Case (ii) x2+4x+3+2x+5=0.
Problems on quadratic equation lecture - 1
Cases
x2+4x+3>0
(x+3)(x+1)>0
x<−3 or x>−1.
Problems on quadratic equation lecture - 1
Cases
Given equation becomes x2+4x+3+2x+5=0
(ie) x2+6x+8=0
(x+4)(x+2)=0
⇒x=−4 & −2
x=−4 is the only solution.
Problems on quadratic equation lecture - 1
Cases
Case (ii)
⇒x2+4x+3<0⇔x∈(−3,−1)
⇒x2+4x+3−2x−5=0
⇒x2+2x−2=0
⇒x=2−2±4+8=−1±3
∴x=−1−3 is the only solution
−4,−1−3.