Complex number lecture 1
Problem 1
Let $z_k=\cos \left(\frac{2 k \pi}{10}\right)+i \sin \left(\frac{2 k \pi}{10}\right)$ where $k \in$ $\{1,2, \ldots, 9\}$. Then which of the following statement(s) is (are) true?
$(A)$ For each $z_k$ there exists $z_j$ such that $z_k z_j=1$;
$(B)$ $\frac{\left|1-z_1\right|\left|1-z_2\right|\ldots\left|1-z_9\right|}{10} =1$;
$(C) \sum_{k=1}^9 \cos \left(\frac{2 k \pi}{10}\right)=1;$
$(D) \sum_{k=1}^9 \sin \left(\frac{2 k \pi}{10}\right)=0;$
Solution
(A) we have
$ z_k=\cos \left(\frac{2 k \pi}{10}\right)+i \sin \left(\frac{2 k \pi}{10}\right)$
$\text { where } k \in \{1,2, \ldots, 9 \}$
$= e^{i 2 k \pi/ 10} $
$= 10^{\text {th }} \text { roots of unity } $
$\left(\text { i.e } z_k^{10}=1\right. \text { for all } k \in \{1,2, \ldots, 9\})$
Observe that for every integers $k$ and $j$,
$z_k z_j =z_{k+j} $
$\biggl( \text {why?} \ z_k z_j =e^{i 2 k \pi / 10} \ e^{i 2 j \pi / 10} \quad \ =e^{\frac{i2(k+j) \pi}{10}} =z_{k+j} \biggl)$
In particular, if $j=10-k$, then
$z_k z_j=z_k z_{10-k}=z_{10}=1$
Also, since $k \in \{1,2, \ldots, 9\}$,
$j=10-k \in \{1,2, \ldots, 9\}$.
Thus, for every $z_k \ ∃ \ z_j$ such that $z_k z_j=1$.
Option (A) is correct.
(B) Recall that for a complex number $z = x + i y,$ the modulus or the absolute value of $z,$ denoted as $|z|,$
Fact: If $z_1$ and $z_2$ are two complex numbers, then
Inductively,
$\left|z_1 z_2 \cdots z_m\right| = | z_1|| z_2|\cdots| z_m \mid$
In our problem $\left|1-z_1\right| |1-z_2 \mid \cdots\left|1-z_9\right|.$
$=\left|\left(1-z_1\right)\left(1-z_2\right)\cdots\left(1-z_9\right)\right|$
Notice that
$x^{10}-1=(x-1)\left(x-z_1\right)\left(x-z_2\right) \cdots\left(x-z_9\right) . . . (1)$
Also,
$x^{10}-1=(x-1)\left(x^9+x^8+x^7+\cdots+x+1\right) . . .(2)$
Comparing equations (1) & (2), we get
$x^9+x^8+\cdots+x+1 =\left(x-z_1\right)\left(x-z_2\right) \cdots\left(x-z_9\right) . . . (*)$
Taking $\ x=1$, we get
$10=\left(1-z_1\right)\left(1-z_2\right) \cdots\left(1-z_9\right)$
$\Rightarrow \frac{\left|1-z_1\right|\left|1-z_2\right| \cdots\left|1-z_9\right|}{10} = \frac{\left|\left(1-z_1\right)\left(1-z_2\right) \cdots\left(1-z_9\right)\right|}{10}$
$=\frac{10}{10} = 1$
Option (B) is correct.
(C) and (D): Comparing the coefficient of $x^8$ in the equation $(*)$, we get $ 1=-\left(z_1+z_2+\cdots+z_9\right)$
$\Rightarrow \sum_{k=1}^9\left[\cos \left(\frac{2 k \pi}{10}\right)+i \sin \left(\frac{2 k \pi}{10}\right)\right]=-1 $
$\Rightarrow \sum_{k=1}^9 \cos \left(\frac{2 k \pi}{10}\right)+i \sum_{k=1}^9 \sin \left(\frac{2 k \pi}{10}\right)=-1$
$\Rightarrow \quad \sum_{k=1}^9 \cos \left(\frac{2 k \pi}{10}\right)=-1 $
$\text{and} \quad \sum_{k=1}^9 \sin \left(\frac{2 k \pi}{10}\right)=0$
Remark 1
Let $z_k=\cos \left(\frac{2 k \pi}{n}\right)+i \sin \left(\frac{2 k \pi}{n}\right)$ where $k \in \{1,2, \ldots, n-1 \}.$ Then
(A) For each $z_k$ there exists $z_j$ such that $z_k z_j=1$;
Proof
Recall
$z_k=e^{ \frac {i 2 k \pi} {n}}$
$\rightarrow n^\text{th} \text{~roots of unity}$
$(\text {i.e. } z_k^n=1 \text { for all} ~k=1,2, \ldots, n-1)$
Verify that
$z_k z_j=z_{k+j}$ for every integers $k$ and $j$
$\therefore$ if $j=n-k$, then
$z_k z_j=z_k z_{n-k}=z_n=1$
$\text{Also, since} ~k \in \{1,2, \cdots, n-1\},$
$j=n-k \in \{1,2 …., n-1\}$ .
Remark 2
(B) $\frac{\left|1-z_1\right|\left|1-z_2\right| \ldots\left|1-z_{n-1}\right|}{n}=1$
$\text{ we’ve}$
$x^n-1=(x-1)\left(x-z_1\right)\left(x-z_2\right) \cdots\left(x-z_{n-1}\right) … (1)$
$x^n-1=(x-1)\left(x^{n-1}+x^{n-2}+\cdots \cdot+x+1\right) … (2)$
$\text{By comparing}$ (1) & (2), $\text{are get}$
$\left(x-z_1\right) \left(x-z_2\right) \cdots\left(x-z_{n-1}\right)$
$= x^{n-1}+x^{n-2}+\cdots+x+1$
$\therefore \text { Taking } x=1, $
$\text{we get}$
$\left(1-z_1\right)\left(1-z_2\right) \cdots\left(1-z_{n-1}\right)=n $
$ \therefore \frac{\left.\left|1-z_1\right||1-z_2\right| \cdots\left|1-z_{n-1}\right|}{n} $
$=\frac{\left.\mid\left(1-z_1\right)\left(1-z_2\right) \cdots\left(1-z_{n-1}\right)\right|}{n}$
$ =\frac{n}{n}={1}$
Remark 3
(C) $ \sum_{k=1}^{n-1} \cos \left(\frac{2 k \pi}{n}\right)=-1;$
(D) $ \sum_{k=1}^{n-1} \sin \left(\frac{2 k \pi}{n}\right)=0.$
$x^n-1=(x-1)\left(x-z_1\right)\left(x-z_2\right)\cdots\left(x-z_{n-1}\right) … (1)$
From equation (1), we get
$1+z_1+z_2+\cdots+z_{n-1}=0 $
$\Rightarrow z_1+z_2+\cdots+z_{n-1}=-1$
$\text { we’ve } \sum_{k=1}^{n-1} z_k=-1 $
$\Rightarrow \sum_{k=1}^{n-1} \cos \left(\frac{2 k \pi}{n}\right)+i \sin \left(\frac{2 k \pi}{n}\right)=-1 $
$\Rightarrow \sum_{k=1}^{n-1} \cos \left(\frac{2 k \pi}{n}\right)+i \sum_{k=1}^{n-1} \sin \left(\frac{2 k \pi}{n}\right)=-1 $
$\Rightarrow \sum_{k=1}^{n-1} \cos \left(\frac{2 k \pi}{n}\right)=-1 $
$\text{and}\quad\sum_{k=1}^{n-1} \sin \left(\frac{2 k \pi}{n}\right)=0$
Problem 2
Let $\omega \neq 1$ be a complex cube root of unity. Find the possible value (s) of $n$ such that
$\left(3-3 \omega+2 \omega^2\right)^{4 n+3}+\left(2+3 \omega-3 \omega^2\right)^{4 n+3}+\left(-3+2 \omega+3 \omega^2\right)^{4 n+3}=0 $
$\omega=e^{2 \pi i / 3} \text { or } e^{4 \pi i / 3}$
(1) Since $\quad\omega^2=1$,
$\Rightarrow \omega^3-1=0 $ $\Rightarrow(\omega-1)\left(\omega^2+\omega+1\right)=0$
$\text{Since} ~\omega \neq 1 \Rightarrow \omega^2+\omega+1=0$
(2) $\text{Since} ~\omega^2=1 \Rightarrow \omega^{-1}=\omega^2$
(3) $ ~\omega^{3 k}=1 \text{for every integer} ~k$
$\left(Why? \quad \omega^{3 k}=\left(\omega^3\right)^k=1^k=1\right)$
Let $E_1=3-3 \omega+2 \omega^2$
$ E_2=2+3 \omega-3 \omega^2$
$E_3=-3+2 \omega+3 \omega^2$
$\text{Observe that}$
$E_1 =\omega\left(3 \omega^{-1}-3+2 \omega\right)$ $=\omega\left(3 \omega^2-3+2 \omega\right)=\omega E_3$
$E_2 =\omega^2\left(2 \omega^{-2}+3 \omega^{-1}-3\right)$ $=\omega^2\left(2 \omega+3 \omega^2-3\right)=\omega^2 E_3$
$\text { Given equation is} $
$ E_1^{4 n+3}+E_2^{4 n+3}+E_3^{4 n+3}=0 $
$\Rightarrow \left(\omega E_3\right)^{4 n+3}+\left(\omega^2 E_3\right)^{4 n+3}+E_3^{4 n+3}=0$
$\Rightarrow {\left[\omega^{4 n+3}+\left(\omega^2\right)^{4 n+3}+1\right] E_3^{4 n+3}=0 }$
Note that $E_3 \neq 0$.
$\biggl( \bold{\text{why ?}} \ \ E_3 =-3+2 \omega+3 \omega^2 \ = ~ -3+2 \omega+3(-\omega-1) =-6-\omega \neq 0 \biggl )$
$\omega^{4 n+3}+\left(\omega^2\right)^{4 n+3}+1=0$
$\Rightarrow\omega^{n+3(n+1)}+\left(\omega^2\right)^{n+3(n+1)}+1=0 $
$\Rightarrow \omega^n+\left(\omega^2\right)^n+1=0$
$\text{i. e.} \quad\omega^n+\omega^{2 n}+1=0$
$\text { If } ~n=3 k \text { for } k \in z, \text { then }$
$\omega^n+\omega^{2 n}+1 =\omega^{3 k}+\left(\omega^2\right)^{3 k}+1 $
$=1+1+1=3 \neq 0$
If $n=3 k+1$ for some $k \in {z}$, then
$\omega^n+\omega^{2 n}+1$
$=\omega^{3 k+1}+\omega^{2(3 k+1)}+1 $
$=\omega+\omega^2+1=0$
$\text { Let } n=3 k+2 \text { for some }k \in z. \text { Then }$
$\omega^n+\omega^{2 n}+1 =\omega^{3 k+2}+\left(\omega^2\right)^{3 k+2}+1 $
$=\omega^2+\omega^4+1 $
$=\omega^2+\omega+1=0$
$\text { If } 3 \times n, \text { then } E_1^{4 n+3}+E_2^{4 n+3}+E_3^{4 n+3}=0$
Problem 3
$(A) \left|z-z_ 1\right|+\left|z-z_ 2\right|=\left|z_ 1-z_2\right|;$
$(B) \operatorname{Arg}\left(z-z_1\right)=\operatorname{Arg}\left(z-z_ 2\right);$
$(C) \left|\begin{array}{cc}z-z_1 & \bar{z}-\overline{z_1} \\ z_2-z_1 & \overline{z_2}-\overline{z_1}\end{array}\right|=0$
$(D) \operatorname{Arg}\left(z-z_1\right)=\operatorname{Arg}\left(z_ 2-z_ 1\right).$
(A) Recall that for
$z =x+i y$,
$|z|=\sqrt{x^2+y^2} \text {. }$
$|z| = l(A O)$
By the parallelogram law,
$z_1+w=z \Rightarrow w=z-z_1 $
$\therefore\left|z-z_1\right|+\left|z-z_2\right|=\left|z_1-z_2\right| $
(B) and (D)
$z = x + i y $
$ =r(\cos \theta + i \sin \theta) $
for some $r \geqslant 0 \ $ & $ \ \theta \in {\R} $
$\theta \rightarrow \text { argument of } z$
Let
$Arg (z) = \text{ the principle argument of } z$
$Arg (z) = \text{ the unique } \theta \text {~such that }$
$z = r(\cos \theta + i \sin \theta) \text { and } $
$ 0\leqslant \theta < 2 \pi$.
$Arg (z-z_1) = Arg (z_2 -z_1)$
(C) $\text{ Let A } = \left[\begin{array}{ll}z-z_1 & \bar{z}-\overline{z_1} \\ z_2-z_1 & \overline{z_2}-\overline{z_1}\end{array}\right]$
$z-z_1=\lambda\left(z_2-z_1\right) \ \ \text{ for some } {\lambda \in \R.} $
Recall for $z = x + i y,$ the complex conjugate if $z$ is
$\bar {z} = x - i y $
Verify if $z_1 \text { and } z_2 $ are two complex numbers, then
(i) $ \overline{z_1 + z_2} = \bar {z_1} + \bar {z_2} $
(ii) $ \overline{z_1 z_2} = \bar{z_1}. \bar {z_2}$
Since $\quad z - z_1 = \lambda (z_2 - z_1),$
$\rArr \overline {z-z_1} = \overline{\lambda (z_2 - z_1)}$ $\rArr \bar {z} - \bar{z_1} = \bar{\lambda} \overline{(z_2 - z_1)}$
$= \lambda (\bar{z_2}- \bar{z_1}) \text{ as } \lambda \in \R$
$\therefore|A|=\left|\begin{array}{cc}\lambda\left(z_2-z_1\right) & \lambda\left(\bar{z}_2-\bar{z}_1\right) \\z_2-z_1 & \overline{z_2}-\overline{z_1}\end{array}\right|$ $ = 0 $
Options (c) and (D) are correct.
Thank you