sinx=siny
x∈{nπ+(−1)n∣n∈Z}
cosx=cosy
x∈{2nπ±y∣n∈Z}
tanx=tany
x∈{nπ+y∣n∈Z}
Find the general solution to cosecx=cotx+√3
sinx1=sinxcosx+3
We know that 1−cosx=2sin22x
1=cosx+3sinx
=2(21cosx+23sinx)
=2(sin6πcosx+cos6πsinx)
=2sin(x+6π)
⇒2sin(x+6π)=1
sin(x+6π)=21=sin6π
x+6π∈{nπ+(−1)n6π∣n∈Z}
x∈{nπ+(−1)n6π−6π∣n∈Z}
Find all solutions to cosecθ+secθ=1
sinθ1+cosθ1=1
cosθ+sinθ=sinθcosθ
Let, t≜sinθ+cosθ,⇒t2=sin2θ+cos2θ+2sinθcosθ⇒t2=1+2sinθcosθ
sinθcosθ=2(t2−1)
t=2(t2−1)
t2−1=2t
t2−2t−1=0
t=22±8=(1±2)
t=sinθ+cosθ=2(sinθ21+cosθ21)
=2(sinθcos4π+cosθsin4π)
=2sin(θ+4π)
∣t∣≤2
t=2sin(θ+4π)=(1−2)
2sin(θ+4π)=(1−2)
sin(θ+4π)=(21−1)=sinϕ
⇒θ+4π∈{nπ+(−1)nϕ∣n∈Z}
⇒θ∈{nπ+(−1)nϕ−4π∣n∈Z}
Find the general solution to (1+sec2θ)(1+sec4θ)=cotθ
(1+cos2θ1)(1+cos4θ1)=sinθcosθ
Multipy L.H.S. and R.H.S. by cos2θcos4θsinθ
(1+cos2θ)(1+cos4θ)sinθ=cosθcos2θcos4θ
2cos2θ 2cos22θsinθ=cosθcos2θcos4θ
4sinθcos2θcos22θ−cosθcos2θcos4θ=0
cosθcos2θ(4sinθcosθcos2θ−cos4θ)=0
cosθcos2θ(2sin2θcos2θ−cos4θ)=0
cosθcos2θ(sin4θ−cos4θ)=0
cosθ=0,orcos2θ=0,orsin4θ−cos4θ=0
cosθ=0⇔θ∈{(2n±1)2π∣n∈Z}
cos2θ=0⇔θ∈{(2n±1)4π∣n∈Z}
sin4θ−cos4θ=0
⇔sin4θ 21−cos4θ 21=0
⇔sin4θcos4π−cos4θsin4π=0
⇔sin(4θ−4π)=0
⇔4θ−4π∈{nπ∣n∈Z}
θ∈{4nπ+16π∣n∈Z}
(1+sec2θ)(1+sec4θ)=cotθ
General solution
{(2n±1)2π∣n∈Z}∪{(2n±1)4π∣n∈Z}∪{4nπ+16π∣n∈Z}
Find the smallest positive value of x such that
tan(x+100∘)=tan(x+50∘)tan(x)tan(x−50∘)
cos(x+100∘)sin(x+100∘)=cos(x+50∘)cos(x)cos(x−50∘)sin(x+50∘)sin(x)sin(x−50∘)
Multiply L.H.S. and R.H.S. by cos(x+100)cos(x+50)cos(x)cos(x−50)
⇒4sin(x+100)cos(x+50)cos(x)cos(x−50)=4sin(x+50)sin(x)sin(x−50)cos(x+100)
L.H.S.
(2sin(x+100)cosx)(2cos(x+50)cos(x−50))
=(sin(2x+100)+sin100)×(cos2x+cos100)
=sin(2x+100)cos2x+sin(2x+100)cos100+sin100cos2x+sin100cos100
R.H.S.
4sin(x+50)sinxsin(x−50)cos(x+100)
=(2sin(x+50)sin(x−50)×(2sinxcos(x+100))
=(cos100−cos2x)×(sin(2x+100)−sin100)
=sin(2x+100)cos100−sin100cos100−cos2xsin(2x+100)+cos2xsin100
∵ L.H.S. = R.H.S.
⇒sin(2x+100)cos2x+sin(2x+100)cos100+sin100cos2x+sin100cos100=sin(2x+100)cos100−sin100cos100−cos2xsin(2x+100)+cos2xsin100
2sin(2x+100)cos2x+2sin100cos100=0
2sin(2x+100)cos2x+2sin100cos100=0
sin(4x+100)+sin100+sin200=0
sin(4x+100)+2sin150cos50=0 (∵sin150=1/2)
sin(4x+100)=−cos50=−sin40
4x+100∈{nπ+(−1)n[(−40)×180π]∣n∈Z}
4x∈{nπ+(−1)n[9−2π]9−5π∣n∈Z}
x∈{4nπ+(−1)n[18−π]−365π∣n∈Z}
n=1,4π−(18−π)−365π
=4π+18π−365π
=45∘+10∘−25∘
=30∘
=6π
For all x∈[0,2π], show that cos(sinx)≥sin(cosx)
sin(2π−sinx)≥sin(cosx)
Let , A=(2π−sinx)B=(cosx),x∈[0,2π]
2π−1≤2π−sinx≤2π
0≤cosx≤1
[2π−1,2π]⊂[0,2π]
[0,1]⊂[0,2π] ⇒A,B∈[0,2π]
Now we know that,
Here, A ≥ B ⇔ sinA≥sinB
Showing 2π−sinx≥cosx in x∈[0,2π] is equivalent to showing
cosx+sinx≤2π for all x∈[0,2π].
sinx+cosx=2(21sinx+21cosx)
=2sin(x+4π),x∈[0,2π]
sin(x+4π)≤1
∴sinx+cosx≤2
∵2<2π
(∵1.41<1.57)
⇒sinx+cosx<2π for all x∈[0,2π]
⇒2π−sinx≥cosx for all x∈[0,2π]
⇒sin(2π−sinx)≥sin(cosx) ⇒cos(sinx)≥sin(cosx)
Find the smallest positive number p for which the equation
cos(psinx)=sin(pcosx) has a solution where, x∈[0,2π]
sin(2π−psinx)=sin(pcosx)
2π−psinx=nπ+(−1)npcosx for some n∈Z
For n=0, 2π−psinx=pcosx
p(sinx+cosx)=2π
p2sin(x+4π)=2π
sin(x+4π)≤1
⇒p≥22n
For n=1
2π−psinx=π−pcosx
p2.cos(x+4π)=2π
Similarly here , p≥22n
2π−psinx=nπ+(−1)npcosx
p((−1)ncosx+sinx)=2−π(2n−1)
p2(2(−1)ncosx+21sinx)=−2π(2n−1)
∵∣acosx+bsinx∣≤(a2+b2)
⇒∣p∣2≥2π∣2n−1∣
p≥22π