$\sin \biggl(\frac{\pi}{2} - \sin x\biggl) \geq \sin (\cos x)$
Let , $A =\biggl(\frac{\pi}{2} - \sin x\biggl) \quad\quad B=(\cos x), x\in \biggl[{0,\frac{\pi}{2}}\biggl]$
$\frac{\pi}{2} -1 \leq \frac{\pi}{2} - \sin x \leq \frac{\pi}{2}$
$0 \leq \cos x \leq 1$
$\biggl[\frac{\pi}{2} -1, \frac{\pi}{2}\biggl] \subset \biggl[0,\frac{\pi}{2} \biggl]$
$[0,1] \subset \biggl[0, \frac{\pi}{2}\biggl]$
$\Rightarrow A,B \in \biggl[0, \frac{\pi}{2}\biggl]$