x=2nπ+y or
x=2nπ−y
for some n∈Z
cos(2nπ+y)=cos(2nπ−y)=cosy
Provecos(2nπ+y)=cos(2nπ−y)=cosy
Proof:
∵cos(A+B)=cosAcosB−sinAsinB
cos(2nπ+y)=cos2nπcosy−sin2nπsiny=cosy
cos(2nπ−y)=cos2nπcosy+sin2nπsiny=cosy ,n∈Z
⇒cos(2nπ+y)=cos(2nπ−y)=cosy
cosx=cosy
⇒cosx−cosy=0
cosA−cosB=2sin2(B−A)sin2(B+A)
⇒2sin2(y−x)sin2(y+x)=0
either sin2(y−x)=0,
or sin2(y+x)=0
sin(2y−x)=0
⇒sin(2x−y)=0
(sinθ=0 ⇒θ=nπ ,n∈Z)
2x−y=nπ for some n∈Z
x=2nπ−y for some n∈Z
sin(2x+y)=0
2x+y=nπ for some n∈Z
x=2nπ−y for some n∈Z
As cosx=cosy, when
either sin2(y−x)=0,⇒x=2nπ+y
or sin2(y+x)=0,⇒x=2nπ−y
cosx=−21
=cos(2π+6π)
cosx=cos32π
n | 2nπ±32π |
---|---|
0 | 32π,3−2π |
1 | 2π+32π,2π−32π |
-1 | −2π+32π,−2π−32π |
If tanx=tany, then x=nπ+y for some n∈Z
For any integer n∈Ztan(nπ+y)=tan(y)
Provetan(nπ+y)=tany for all n∈Z
Proof:
tan(A+B)=1−tanAtanBtanA+tanB
tan(nπ+y)=1−tannπ tanytannπ+tany
For any n∈Z
tannπ=cosnπsinnπ = 0 (∵sinnπ=0)
⇒tan(nπ+y)=1−tannπ tanytannπ+tany=tany
tanx=tany
⇒tanx−tany=0
⇒cosxsinx−cosysiny=0
⇒cosxcosysinxcosy−cosxsiny=0
⇒sinxcosy−cosxsiny=0
⇒sin(x−y)=0
⇒(x−y)=nπ
⇒x=nπ+y for some n∈Z
Find the general solution to acosθ+bsinθ=c
(where, a, b, c are real).
a2+b2acosθ+a2+b2bsinθ=a2+b2c
a2+b2a=cosϕ
a2+b2b=sinϕ
cosϕcosθ+sinϕsinθ=a2+b2c
cos(θ−ϕ)=a2+b2c=cosy
a2+b2c≤1
We know that for any n∈Z
cos(2nπ+y)=cos(2nπ−y)=cosy
⇒θ−ϕ=2nπ±y for all n∈Z
θ∈{ϕ+2nπ±y∣ n∈Z}
The solution set of the system of equations
x+y=32π
cosx+cosy=23
where x,y are real is __?
y=32π−x
cosx+cos(32π−x)=23
cosx+cos32πcosx+sin32πsinx=23
cosx−21cosx+23sinx=23
21cosx+23sinx=23
cos3πcosx+sin3πsinx=23
cos(x−3π)=23→ no solution
Find the general value of θ satisfying
2sin2θ−3sinθ−2=0
z=sinθ
2z2−3z−2=0
z=43±9+16
z=43±5,z=43−5=2−1
sinθ=2−1
sinθ=−21
∵sin(π+x)=−sinx⇒x=6π
sin67π=−sin6π=−21
∴sinθ=sin67π
sinx=siny
x∈{nπ+(−1)ny∣n∈Z}
Therefore General solution is , {nπ+(−1)n67π∣n∈Z}
Find the general value of θ satisfying
tan2θ+sec2θ=1
tan2θ+cos2θ−sin2θcos2θ+sin2θ=1
tan2θ+1−tan2θ1+tan2θ=1
tan2θ(1−tan2θ)+1+tan2θ=1−tan2θ
2tan2θ+1−tan4θ=1−tan2θ
tan4θ−3tan2θ=0
tan2θ(tan2θ−3)=0
tanθ=0=tan0⇒θ=nπ
tan2θ−3=0
⇒tanθ=+3,tanθ=−3
tanθ=3=tan3π
tanx=tany
x∈{nπ+y∣n∈Z}
θ∈{nπ+3π∣n∈Z}
tanθ=−3=tan(−3π)
θ∈{nπ−3π∣n∈Z}
tan2θ+sec2θ=1
⇒tan2θ(tan2θ−3)=0
⇒tanθ=0 or tanθ=3 or tanθ=−3
Therefore General solution is ,{nπ∣n∈Z}∪{nπ+3π∣n∈Z}∪{nπ−3π∣n∈Z}
Find the values of x∈(−π,π) which satisfy the equation
21+∣cosx∣+∣cos2x∣+⋯=4
m∈Z,∣cosmx∣=(∣cosx∣)m
1+∣cosx∣+∣cos2x∣+⋯
=1+∣cosx∣+∣cosx∣2+∣cosx∣3+⋯⋯
Put, c=∣cosx∣
=1+c+c2+c3+⋯
=1−c1 iff ∣c∣<1
x=0 and x∈(−π,π)
21−∣cosx∣1=4
⇒1−∣cosx∣=21
⇒∣cosx∣=21
either cosx=21 or cosx=−21
x∈{2nπ±3π∣n∈Z}∪{2nπ±32π∣n∈Z}
So, values of x∈(−π,π) which satisfy the given equation are ,
3−π,3π,32π,3−2π
[2π−32π=34π∈/(−π,π)]
Let m be an odd integer.
If sinmx=∑p=0mbpsinpx for every x, then find the value of b0 and b1.
sinmx=b0+b1sinx+b2sin2x+….+bmsinmx
Put x= 0 ,
b0=0
limx→0sinxsinmx=limx→0(b1+b2sinx+b3sin2x+…+bmsinm−1x)
m=b1
∴b1=m1,b0=0
Find all the solution of
4cos2xsinx−2sin2x=3sinx
sinx[4(1−sin2x)−2sinx−3]=0
sinx[1−2sinx−4sin2x]=0
For sinx=0,x∈{nπ∣n∈z}
For 4sin2x+2sinx−1=0
sinx=8−2±4+16
={4−1−5,45−1}
={sin10−3π,sin10π}
sinx=sin10π
⇒x∈{nπ+(−1)n10π∣n∈Z}
sinx=sin(10−3π)
⇒x∈{nπ+(−1)n10−3πn∈Z}
⇒ General solution is {nπ∣n∈Z}∪{nπ+(−1)n10π∣n∈Z}∪{nπ+(−1)n10−3π∣n∈Z}