$\sqrt{3} \cos 20^{\circ} - \sin 20^{\circ}$
$ = (a \cos20^{\circ} - b \sin 20^{\circ})c$
$c=2, a = \frac{\sqrt{3}}{2}, b = \frac{1}{2}$
$=2\Biggl(\frac{\sqrt{3}}{2} \cos 20^{\circ} - \frac{1}{2} \sin 20^{\circ}\Biggl)$
$\cos A = \frac{\sqrt{3}}{2}, \sin A = \frac{1}{2}$
$A=30^{\circ}$
$\sqrt{3} \cos 20^{\circ} - \sin 20^{\circ} = 2(\cos (30^{\circ} +20^{\circ}))= 2 \cos 50^{\circ}$