Find the value of3cosec20∘−sec20∘
Solution: 3cosec20∘−sec20∘
=sin20∘3−cos20∘1
=sin20∘cos20∘3cos20∘−sin20∘
sin2A=2sinAcosA
=21sin40∘3cos20∘−sin20∘
3cos20∘−sin20∘=(acos20∘−bsin20∘)×c
cos(A+B)=cosAcosB−sinAsinB
cos(A+20∘)=cosAcos20∘−sinAsin20∘
a2+b2=1
ac=3 and bc=1
(ac)2+(bc)2=4
c2(a2+b2)=4c=2
3cos20∘−sin20∘
=(acos20∘−bsin20∘)c
c=2,a=23,b=21
=2(23cos20∘−21sin20∘)
cosA=23,sinA=21
A=30∘
3cos20∘−sin20∘=2(cos(30∘+20∘))=2cos50∘
3cosec20∘−sec20∘
=21sin40∘3cos20∘−sin20∘
=21sin40∘2cos50∘
=4
Show that tan6∘tan42∘tan66∘tan78∘=1
Solution: tanx=cosxsinx
cos6∘cos42∘cos66∘cos78∘sin6∘sin42∘sin66∘sin78∘
sin6∘sin66∘=21(21−cos72∘)
{∵2sinAsinB=cos(A−B)−cos(A+B)}
sin42∘sin78∘=21(cos36∘+21)
cos(90∘+x)=−sinx
cos(120∘)=−sin30∘=2−1
⇒sin6∘sin66∘sin42∘sin78∘
=41(21−cos72∘)(21+cos36∘)
cos6∘cos66∘=21(cos72∘+21)
{2cosAcosB=cos(A+B)+cos(A−B)}
cos42∘cos78∘=21(2−1+cos36∘)
cos6∘cos42∘cos66∘cos78∘
=41(21+cos72∘)(cos36∘−21)
L.H.S. =41(21+cos72∘)(cos36∘−21)41(21−cos72∘)(21+cos36∘)
=21cos36∘−41+cos36∘cos72∘−21cos72∘41+21cos36∘−21cos72∘−cos36∘cos72∘
41−cos36∘cos72∘=cos36∘cos72∘−41
2cos36∘cos72∘=21
cos36∘cos72∘=41
⇒ L.H.S.=21cos36∘−41+41−21cos72∘41+21cos36∘−21cos72∘−41
=21cos36∘−21cos72∘21cos36∘−21cos72∘=1
cos36∘cos72∘=sin54∘sin18∘
(∵cos36∘=sin54∘;cos72∘=sin18∘)
sin18∘=4(5−1)
sin3x=3sinx−sin3x
sin54∘=4(5+1)
sin54∘sin18∘=4(5−1)4(5+1)
=16(5−1)=41
Show that sin48π+sin483π+sin485π+sin487π=23
Solution: 85π=8π+2π
sin4(85π)=sin4(2π+8π)
=cos4(8π)
87π=2π+83π
sin48π+cos48π+sin483π+cos483π
sin48π+cos48π=(sin28π+cos28π)2−2sin28πcos28π,{∵a4+b4=(a2+b2)2−2a2b2}
=1−21(2sin8πcos8π)2
=1−21sin24π=43
sin483π+cos483π=cos48π+sin48π=43
[sin483π=sin4(2π−8π)=cos48π
cos483π=sin48π]
⇒sin48π+sin483π+sin485π+sin487π=43+43=23
Equations involving trigonometric functions of a variable
e.g. sinx+tanx=2
No
Example: sinx=2 has no solution
sin(x)=sin(x+2π)
cos(x)=cos(x+2π)
tan(x)=tan(x+xπ)
Let, sinx+tanx=2
Put, x=θsinθ+tanθ=2
sin(θ+2π)+tan(θ+2π)
=sinθ+tanθ=2
Solutions which lie in the interval [0,2π],are Principal solutions.
Here, Red line representing the line sinx=21
So, x=6π,x=65π are Principal solutions.
sinx=0⇔x=nπ,n∈Z
cosx=0⇔x=(n+21)π,n∈Z
1.If sinx=siny then
x=nπ+(−1)ny, for some n∈Z
2.For any n∈Z,
sin(nπ+(−1)ny)=sin(y)
sin(nπ+(−1)n6π)=sin6π=21
sinx=sin6π
n | nπ+(−1)n6π,n∈Z |
---|---|
0 | 6π |
1 | π+(−6π)=65π |
2 | 2π+6π |
3 | 3π−6π |
sin(nπ+(−1)ny)(∵sin(A+B)=sinAcosB+cosAsinB)
=(sinnπcos(−1)ny)+cosnπsin(−1)ny
=cosnπsin(−1)ny
(n even⇒cosnπ=1,n odd⇒cosnπ=−1)
(cosnπ=(−1)n)
⇒sin(nπ+(−1)ny)=(−1)nsin(−1)ny
(n even⇒siny,n odd⇒−sin(−y))
=siny
⇒sin(nπ+(−1)ny)=siny
sinx=siny
⇒sinx−siny=0
⇒2cos(2x+y)sin(2x−y)=0
either cos(2x+y)=0
2x+y=(m+21)π for some m∈Z
x+y=(2m+1)π
x=(2m+1)π−y
x=(2m+1)π+(−1)2m+1y
or, sin(2x−y)=0
sinθ=0,θ=mπ,m∈Z)
2x−y=mπ,m∈Z
x=2mπ+y for some m∈Z
x=2mπ+(−1)2my
x=nπ+(−1)ny for some ∈Z