tan(x+y)=cos(x+y)sin(x+y)
=cosx cosy−sinx sinysinx cosy+cosx siny
=cosx cosycosx cosy−cosx cosysinx sinycosx cosysinx cosy+cosx cosycosx siny
tan(x+y)=1−tanx tanytanx+tany
tan(x−y)=tan(x+(−y))
tan(x−y)=1−tanx tan(−y)tanx+tan(−y)
tan(x−y)=1+tanx tanytanx−tany
tan(2x)=tan(x+x)=1−tanx.tanxtanx+tanx=1−tan2x2 tanx
tan(2x)=1−tan2x2 tanx
(where, 2x=odd multiple of 2π)
tan(3x)=tan(x+2x)=1−tanx tan2xtanx+tan2x
=1−tanx1−tan2x 2tanxtanx+1−tan2x2tanx
tan(3x)=1−tan2x−2tan2xtanx(1−tan2x)+2tanx
tan(3x)=1−3tan2x3tanx−tan3x
(where, 3x=odd multiple of 2π)
cot(x+y)=tan(x+y)1[∵cotx=tanx1]
tan(x+y)=1−tanx tanytanx+tany
cot(x+y)=tanx+tany1−tanx tany
=tanx tanytanx+tanx tanytanytanx tany1−1
cot(x+y)=cotx+cotycotxcoty−1
(where, (x+y)= multiple of π)
cot(x−y)=cotx+cot(−y)cotxcot(−y)−1
cot(x−y)=coty−cotx1+cotxcoty
Again,
cot(x+y)=cotx+cotycotxcoty−1
Put y=x
∴ cot(2x)=2cotxcot2x−1
cot(3x)=cot(x+2x)=cotx+cot2xcotx cot2x−1
=cotx+2cotxcot2x−1cotx2cotxcot2x−1−1
cot(3x)=3cot2x−1cot3x−3cotx
(where, 3x= multiple of π)
cosec(x)=sinx1,
Domain : R
∣sinx∣⩽1
∣cosecx∣⩾1
Range : (−∞,−1]∪[1,∞)
sec(x)=cos(x)1,
Domain : R
∣cosx∣⩽1
∣secx∣⩾1
Range : (−∞,−1]∪[1,∞)
We know that
2cosx cosy=cos(x+y)+cos(x−y)
Put,x=2A+B,y=2A−B
∴ 2cos2(A+B)cos2(A−B)=cosA+cosB
Show that: sin7x−sin3xcos7x+cos3x=cot2x
∵cosA+cosB=2cos2A+Bcos2A−B
∴cos7x+cos3x=2cos5xcos2x
∵sinA−sinB=2cos2A+Bsin2A−B
∴sin7x−sin3x=2cos5xsin2x
L.H.S.=2cos5xsin2x2cos5xcos2x=cot2x=R.H.S.
Show that: sin3x+sin4x+sin5xcos3x+cos4x+cos5x=cot4x
∵ cosA+cosB=2cos2A+Bcos2A−B
∴ cos3x+cos5x=2cos4xcosx
Numerator(L.H.S.)=2cos4xcosx+cos4x
=cos4x(1+2cosx)
∵ sinA+sinB=2sin2A+Bcos2A−B
∴ sin3x+sin5x=2sin4xcosx
Denominator(L.H.S.)=sin4x(1+2cosx)
L.H.S=sin3x+sin4x+sin5xcos3x+cos4x+cos5x=sin4x(1+2cosx)cos4x(1+2cosx)=cot4x
Compute: sin(18∘)
Solution:
∵sinx=cos(2π−x)
sin36∘=cos54∘,
We know that,
sin2θ=2sinθ cosθ
cos3θ=4cos3θ−3cosθ
For θ=18∘,sin2θ=cos3θ
∴2sinθcosθ−(4cos3θ−3cosθ)=0
cosθ(2sinθ−4cos2θ+3)=0
For θ=18∘,cosθ=0
∴(2sinθ−4cos2θ+3)=0
⇒4cos2θ−2sinθ−3=0
⇒4−4sin2θ−2sinθ−3=0
⇒4sin2θ+2sinθ−1=0z≜sinθ
4z2+2z−1=0
z=8−2±20
sin18∘=8−2+20=45−1
Prove that: 1+cosx1−cosx=cosecx−cotx
Solution:
R.H.S.=sinx1−sinxcosx
=sinx1−cosx
L.H.S.=1+cosx1−cosx=1−cosx1−cosx×1+cosx1−cosx=1−cos2x1−cosx
=sinx1−cosx=R.H.S.
Find the value of cos40∘−cos20∘+cos80∘.
Solution:
∵ cosA+cosB=2cos(2A+B)cos(2A−B)
∴ cos40∘+cos80∘=2cos60∘cos20∘
=cos20∘[∵cos60∘=21]
cos40∘−cos20∘+cos80∘=cos20∘−cos20∘=0
Prove that: tanθ+2tan2θ+4tan4θ+8cot8θ=cotθ
Solution:
∵tan2x=1−tan2x2tanx
x=4θ
tan8θ=1−tan24θ2tan4θ
Now,
8cot8θ+4tan4θ=2tan4θ8(1−tan24θ)+4tan4θ
=4[tan4θ1]
L.H.S.=tanθ+2tan2θ+tan4θ4
Again, tan4θ=1−tan22θ2tan2θ
tan4θ4+2tan2θ=2tan2θ4(1−tan2θ)+2tan2θ
=tan2θ2
L.H.S.=tanθ+tan2θ2
=tanθ+2tanθ2(1−tan2θ)
=tanθtan2θ+1−tan2θ
=tanθ1=cotθ=R.H.S.
Show that: cosAcos2Acos4A=8sinAsin8A
Solution:
∵ sin2θ=2sinθcosθ
θ=4A
∴ sin8A=2sin4Acos4A
R.H.S.=8sinAsin8A=8sinA2sin4Acos4A
sin4A=2sin2Acos2A
We have to show
8sinA2sin4A=cosAcos2A
∵sin4A=2sin2Acos2A
∴ 8sinA2sin4A=2 8sinA2sin2Acos2A
=2sinA2sinAcosAcos2A{∵sin2A=2sinAcosA}
8sinA2sin4A=cosAcos2A