$ \cot (x+y) = \frac{1}{\tan (x+y)} \quad [\because \cot x = \frac{1}{\tan x}]$
$ \tan (x+y) = \frac{\tan x + \tan y}{1-\tan x \ \tan y} $
$ \cot (x+y) = \frac{1-\tan x \ \tan y}{\tan x + \tan y} $
$ \quad \quad \quad \quad \quad = \frac{\frac{1}{\tan x \ \tan y} -1}{\frac{\tan x}{\tan x \ \tan y} + \frac{\tan y}{\tan x \ \tan y}} $
$\cot (x+y) = \frac{\cot x \cot y-1}{\cot x + \cot y}$
$\biggl(\text{where,} \ (x+y) \neq \text{\ multiple \ of} \ \pi \biggl)$
======
$\text{Formula of} \ \cot (x-y) \ \& \ \cot 2x$
$\cot (x-y) = \frac{\cot x \cot (-y) -1}{\cot x + \cot (-y)}$
$\cot (x-y) = \frac{1+\cot x \cot y}{\cot y - \cot x}$
Again,
$\cot (x+y) = \frac{\cot x \cot y -1 }{\cot x+\cot y}$
Put $ y=x$
$\therefore$ $\ \cot (2x) = \frac{\cot ^2x -1}{2 \cot x}$